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Abstract 
 

In extensive form games of perfect information, where all play could potentially be observed, the backward 
induction algorithm yields strategy profiles whose actions are best responses at every possible subgame. To 
find these actions, players must deliberate about the outcomes of their choices at every node they may be called 
to play, based upon their mutual knowledge of rationality. However, there are in general nodes that will not 
reached under equilibrium, and in these situations, players must hypothesize about the truth of counterfactuals 
asserting what would have happened had a deviation occurred. The paper conjectures that deviations may 
confer information relevant for future play and therefore have a causal consequence upon contingent play. A
proper foundation for the backward induction solution requires therefore, the formalization of strategies as 
contingent constructions as well as a theory of counterfactuals to support the truth condition of these 
conditionals. The paper considers Lewis´ and Bennett’s criteria to assert the truth of counterfactual 
conditionals and conjectures that these approaches lead to different ways of thinking about deviations. 
According to our interpretation of Lewis´approach and in our version of the centipede game, common 
knowledge of rationality –as it is defined in the paper- leads to the backward induction outcome. According to 
our interpretation of Bennett´s approach, backward induction can be supported only if the players have the 
necessary amount of ignorance, which depends on the number of nodes of the game. 
________________  
*This paper is a revised version of the first chapter of the doctoral dissertation submitted to UCLA in 
November, 1995. 
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1 Introduction 
 

Reasoning about the outcomes of alternative actions is a crucial constituent of any 
decision. A player can not rationally choose a strategy if he can not assert what would have 
happened otherwise. In particular, the play of a given equilibrium by a player is justified in 
terms of his rationality, if he either knows or believes that had he deviated he would have 
not been better off. In other words, conjectures about the occurrence of events that are not 
expected under equilibrium not only support or justify the choice of a strategy, but also 
assure that it is not profitable to deviate.

Consider an extensive game of perfect information. If players deliberate about their 
decisions at every subgame and therefore optimize in each possible scenario on- and off-the-
equilibrium- path, then, not only unilateral deviations will be unprofitable (a requisite that 
every Nash equilibrium satisfies) but also deviations by more than one player.   

This is the idea upon which the backward induction argument is based. Yet the 
problem with the algorithm, as it is typically presented, is that the corresponding 
counterfactual reasoning is not analyzed as such. Deviations are devoid of meaning and 
hence, are not supposed to confer any information to the players regarding the rationality of 
the deviator. This means that they can not have consequences upon contingent play, which 
ultimately depends on the maximizing choice at the last node. 

Our main premise is that, in order to obtain a proper foundation for the backward 
induction algorithm, players need an appropriate framework to assert the truth condition of 
the conditionals involved in deliberation off-the-equilibrium path. As it is extensively 
acknowledged in the literature, the outcomes of these thought experiments will depend not 
only upon this framework, but also upon the knowledge and beliefs of the players regarding 
the game and their mutual rationality. 

In the literature of non cooperative extensive form games of perfect information, the 
centipede game is one whose backward induction solution still motivates a considerable 
amount of disagreement concerning its logical foundations. The solution is also considered 
counterintuitive or puzzling and does not perform well in experimental studies [16]. Two 
issues sustain the theoretical controversy. On the one hand, there is the question of how to 
give meaning to the assumption of rationality in the context of counterfactual reasoning and 
on the other, assuming that this is possible, how to derive the backward induction outcome 
from this supposition.  

With respect to the first issue, Reny [17] asserts that common knowledge of rationality 
is not attainable in games exhibiting the properties of the centipede game. After observing a 
deviation in a centipede game with three or more nodes, there cannot be common 
knowledge that the players are maximizers. On the other hand, Binmore [7] asserts that the 
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irrationality of a player who deviates in the centipede game is an open matter, because it is 
not clear what the opponent should deduce about the rationality and further play of the 
deviator. 

To concentrate on the second question, let us assume that it is possible for the players 
to have common knowledge of rationality. The issue of how to derive the backward 
induction outcome when hypothetical thinking is present, is also a matter of controversy. 

Aumann [2] proves that in games of perfect information, common knowledge of 
rationality leads to the backward induction equilibrium. On the other hand, Binmore [7] 
claims that rational players would not necessarily use the strategies resulting from this 
algorithm. He supports the equilibrium where the first player plays his backward induction 
strategy and the second mixes between leaving and taking the money. In [6], he proposes to 
enlarge the model by introducing an infinite set of players, so that the presence of irrational 
players, who exist with probability zero, is not ruled out altogether. Bicchieri ([4]&[5]) 
proves that, under the assumption of common knowledge of rationality, there is a lower and 
an upper bound of mutual knowledge that can support the backward induction outcome. The 
lower bound involves a level of mutual knowledge for the root player equal to the number of 
nodes in the equilibrium path minus one. Samet [18] proves within his framework, that 
common hypothesis of rationality at each node implies backward induction and that, for 
each node off-the-equilibrium path, there is common hypothesis that if that node were to be 
reached then it would be the case that not all players are rational. 

The purpose of this paper is to test the internal consistency of the backward induction 
algorithm by presenting a formalization capable of incorporating counterfactual reasoning at 
nodes off-the-equilibrium-path. The aim is to find sufficient conditions, regarding players' 
knowledge and beliefs, capable of yielding the truth of the supporting counterfactuals.  

The paper considers two criteria to determine the truth of  counterfactual conditionals, 
based upon the theories of counterfactuals developed by David Lewis [14] and Jonathan 
Bennett [3] respectively. Under our interpretation of Lewis' approach and the assumption of 
common knowledge of rationality, (as it will be defined below) the backward induction 
outcome can be obtained. The reason is that players are not necessarily led to reject their 
beliefs concerning the rationality of their opponents at other counterfactual scenarios where 
they might have a chance to play again. Under our interpretation of Bennett's approach and 
the assumption of common knowledge of rationality, the theory becomes inconsistent. This 
result is similar in spirit to the one in Bicchieri [5] although it is obtained under different 
conditions. Unless the amount of mutual knowledge of the root player is reduced to a level 
equal to the number of nodes in the equilibrium path minus one, backward induction can not 
be supported. Relaxing the assumption of common knowledge or rationality in favor of 
common belief implies that there may be scenarios compatible with backward induction 
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where no inconsistency obtains although common belief in rationality needs to be dropped 
in these situations. This result resembles one of the outcomes in Samet [18]. 

The organization of this paper is as follows. The first section explains the nature of 
counterfactuals and analyses their role in strategic situations. The second, presents the 
framework and formalization of the backward induction solution in terms of counterfactual 
reasoning. The third section incorporates the two mentioned approaches to establish the 
truth of these counterfactuals and analyzes the conditions, in terms of different levels of 
mutual knowledge and belief, under which the backward induction outcome obtains. To 
conclude, the fourth presents an overall evaluation of the results, in perspective with their 
philosophical justifications and implications.  

 
1.1 Counterfactual conditionals 
 
A counterfactual or a subjunctive conditional is an implication of the following form: 
Had P happened then Q would have happened.  
The counterfactual connective will be denoted by " �→ " and the previous 

subjunctive conditional will be denoted by "P �→Q", where "P" and "Q" are two 
propositions defined within some language L1. The difference between a counterfactual and 
an indicative conditional represented by "If P then Q" is that P is necessarily false in the 
case of a counterfactual.  

Truth functional analysis establishes that "if P then Q" is true in the following 
circumstance: Q is true or P is false. If this approach were to be followed in the case of 
counterfactual conditionals we would be left with no clear result; any conditional with a 
false antecedent would be true regardless of the truth condition of the consequent. 
Nevertheless, Stalnaker [20] observes that "the falsity of the antecedent is never sufficient 
reason to affirm a conditional, even an indicative conditional." Conditionals, no matter 
whether indicative or subjunctive, establish a connection or function between propositions 
and this connection is not necessarily represented by the truth functional analysis. The truth 
functional analysis only deals with the truth conditions of the propositions in isolation yet 
the conditional alludes to some connection or function between the propositions. 

Within purely logical or mathematical systems the connection between propositions is 
ruled by a set of axioms. In this case, truth functional analysis is sufficient. However, when 
conditionals refer to other types of frameworks this criteria is not sufficient. Consider for 
instance the following conditional: "If John studies for the test, he will pass the exam." 
Would we try to assert the truth of this conditional by answering whether it is true that John 

 
1 The expressions: propositions, predicates, sentences or formulas will be used indistinctively from now on. 



5

will study and whether it is true that he will pass the exam? The answer is clearly negative. 
We will say that the conditional is true only if we can support the opinion that studying is 
enough to pass an exam. Were we to consider that luck is what matters, then it could be true 
that John studied and passed the exam, but actually did so as a consequence of being lucky. 

Counterfactual conditionals are similar to indicative conditionals in this respect. 
Imagine John did not study and he did not pass the exam. We could say "had John studied 
he would have passed the exam". Again, consider a purely truth functional analysis. John 
did not study. Therefore, the antecedent is false and the subjunctive conditional is true 
regardless of whether he passed the exam. Is this enough to solve the previous 
counterfactual? Obviously, not. In order to do so, we need to have a hypothesis of how 
studying could have affected passing the exam. As in the case of indicative conditionals, we 
need to test whether the connection, counterfactual or not, exists. 

One approach to the task of solving counterfactuals starts with the premise that the 
issue of how to assert the truth of a counterfactual is basically the question of how to 
inductively project a predicate (see Goodman [10]). This is a principle-oriented criteria 
because it stresses the existence of a principle that links the predicates that form part of the 
conditional. Although counterfactuals deal with events that have not happened and therefore 
can not be solved by means of empirical tests, we can construct a criteria based on some 
observed regularity that represents the connection between the antecedent and the 
consequent. For instance, a player that decided to play an equilibrium strategy cannot test 
what would have happened otherwise, because he is not going to deviate. He needs a 
hypothesis concerning the repercussions of his deviation and this hypothesis cannot be 
brought about by a test within this game. Players may be able to form a hypothesis based on 
previous experience with the same game or players. However, if they decide to play the 
equilibrium, that is because the "otherwise-hypothesis" has a definite answer2. In other 
words, players cannot run a test while they play the game to discover something they should 
have known in order to decide a priori how to play. When this answer cannot be established 
players are left with no rational choice. Given that counterfactuals cannot be handled by 
experimentation or logical manipulation, there is a need for a set of principles to 
characterize the conditions under which the corresponding predicate can be projected. In the 
first example, the predicate is "students that study pass exams". To say that "had John 
studied he would have passed the exam" is true, is to assert that the predicate "students that 
study pass exams" can be extended from a sample to an unobserved case which is John's 
case.  

 
2 This includes their assigning probability values or ranges when decisions are modeled in uncertain 

environments. 
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This approach is not very powerful when we can not identify a principle or predicate 
to project, when we don't have enough information, or our sample of past predictions is not 
good enough to trust projections. Consider the counterfactuals involved in game theoretical 
reasoning. The previous approach would be useful if we thought of behavior in games as 
determined by a human disposition. In this case we would assume that players' behavior is 
intrinsically ruled by a principle. Players within a game may never fully characterize this 
principle but at least in certain environments they may be able to construct a well entrenched 
hypothesis, given their sample of observations. However, this does not apply to games 
which are not played oft enough for the players to learn something about the behavior of 
their opponents. 

The literature in games has developed a consensus regarding the issue that rational 
choices are not rational because they are chosen by rational players. In general it is asserted 
that a person is rational if he chooses rationally (see Binmore [6]&[7]). Leaving this matter 
aside, we are going to introduce an alternative framework to assert the truth of 
counterfactuals that seems to be more compatible with this last concept of rationality.  This 
is the approach to counterfactuals in terms of possible worlds.

Within the possible-worlds semantics (see Stalnaker [20]) the truth of a counterfactual 
does not necessarily depend on the existence of a principle or law. To evaluate whether       
P �→Q is true one has to realize the following thought experiment: "add the antecedent 
(hypothetically) to your stock of knowledge (or beliefs), and then consider whether or not 
the consequent is true" (Stalnaker [20]). When there is a principle or a connection involved, 
then it should be part of the beliefs that we should hold and we should consider as 
hypothetically true any consequence that, by this principle, follows from the antecedent. 
When no connection is suspected or believed, one should analyze the counterfactual in 
terms of the beliefs in the corresponding propositions, and the relevant issue is whether or 
not the counterfactual antecedent and consequent can be believed to hold at the same time. 
Following this approach, which is similar in spirit to Frank Ramsey's test for evaluating the 
acceptability of hypothetical statements, Stalnaker [20] and Lewis ([14]&[15]) have 
suggested two closely related theories of counterfactuals (see Harper [11]).  

When we believe that the antecedent is false (for instance, when the antecedent entails 
a deviation by some player) the thought experiment or world, within which the antecedent is 
true, may not result from the mere addition of the antecedent to the stock of beliefs without 
resulting in a contradiction. Therefore, the beliefs that contradict the antecedent should be 
deleted or revised. The problem is that there is not be a unique way to do so. A deviation 
may imply at least one of the following things: i) the deviator is simply irrational either in 
terms of his reasoning capacities or formation of beliefs, ii) he is rational in terms of his 
reasoning capacities but he just made a mistake in the implementation of his choice iii) he 
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did it on purpose, due to the lack of knowledge about his opponents' knowledge or iv) as in 
iii) but due to the lack of knowledge concerning either the structure of the game or his 
opponents' rationality.   

There is no way to avoid the multiplicity of possible explanations and the issue is that 
whatever the players believe, it should be commonly held for the equilibrium outcome to be 
consistent.  

Possible world theories offer a framework to evaluate which of the possible 
explanations should or could be chosen. A possible P-world is an epistemological entity, a 
state of mind of a player, represented by his knowledge and belief, in which proposition P is 
true. For instance, the previous four explanations represent possible worlds in which a 
deviation is believed to have occurred. They are all deviation-compatible scenarios.
Possible world theories assert, roughly speaking, that in order to evaluate the truth of a 
counterfactual representing a deviation we need a criterion to select which of the above 
deviation-worlds is the most plausible. In the case of game theory, this criterion requires a 
behavioral assumption that in general is represented by the concept of rationality. We need 
to find the deviation-world (there could be more than one) that contains the minimal 
departure from the equilibrium world and evaluate, in terms of players' rationality, which 
consequent or response, holds in that closest world. The equilibrium world will be defined 
as the actual world and we will assume that in this world, players are rational (in a suitably 
defined way) and have some degree of mutual knowledge in their rationality. 

 
1.2 Counterfactuals in Game Theory 

Consider the following example that closely resembles off-the-equilibrium path 
reasoning: 

John is looking down the street standing at the top of the Empire State 
Building. As he starts walking down the stairs he says to himself: "Hmm, had I 
jumped off I would have killed myself..." 

A very close friend of his is asked later on whether he thinks it is true that 
"had John jumped off the Empire State building he would have killed himself". 

Well, he says, I know John very well; he is a rational person. He would have 
not jumped off hadn't there been a safety net underneath... I hold that 
counterfactual is false...3

3 This example is discussed in Jackson [13] and Bennett [3]. 
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Rationality in strategic contexts is a complex phenomenon. There is on the one hand 
the rationality that alludes to players' capacity to optimize given their knowledge and beliefs 
and on the other their rationality in terms of belief formation. However, there is a further 
issue that is particularly critical in games where actions can be observed. Players do not only 
need to decide but to act upon their decisions. Moreover, given the fact that actions are 
observed, actual performances will confer some information to the other players and 
therefore may have an impact on their decisions about how to further play the game. If a 
deviation is understood as some non systematical imperfection in the mapping from 
decisions to actions, then the assumption concerning the rationality in reasoning and belief 
formation of the deviator does not need to be updated. When this is ruled out, some 
intentionality must be assumed. When John's friend is asked about the truth of the 
counterfactual that had John jumping from the top of the building, he is assuming that 
nothing can go wrong with John's capability to perform what he wants and that therefore, a 
world in which John jumps, is a world in which a safety net needs to exist. There are two 
issues here. On the one hand, it is reasonable to assume that in the actual world John can 
fully control his capability of not falling in an unintended way, yet this capacity may be 
deleted in the hypothetical world in which he jumps. This relaxation can be considered as a 
thought experiment that is, the envisagement of a hypothetical world in which the only 
different fact with respect to the actual world is that John jumps and where no further 
changes (neither psychological nor physical) interfere with the outcome of the fall. The 
crucial and troublesome issue in game theory is to establish whether a deviation could imply 
further deviations by the same player. Are these counterfactual worlds correlated? 

Another issue is to define which parameters or features of the world we are allowed to 
change when deliberating about a deviation. Counterfactuals are acknowledged to be context 
dependent and subject to incomplete specification. John's friend may know that in the actual 
world, the one in which John did not jump, there was no safety net. However, in the 
hypothetical scenario in which John jumps, his friend's willingness to keep full rationality 
(absence of wrong performances) obliges him to introduce a net. Which similarity with the 
real world should be preserved? That concerning the safety net or that which assumes that 
nothing can go wrong? Assume we think that John is rational because he does not typically 
jump from the top of skyscrapers. This is his decision. However, had he either decided or 
done otherwise in that case, where there was no safety net, he would have died. We would 
assert that the counterfactual under analysis is true because, although John did not choose to 
jump he could have done so, and had he jumped off in a world in which the only difference 
with the actual is John's decision or performance, then he would have killed himself. Is this 
reasoning the only possible one?  It is obviously not. His friend does not seem to think this 
way. 
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Following the parallel with game theory, consider a case such that if John jumps then 
his friend will face the decision of whether to jump or not from the same building. Now his 
reasoning will lead him to the conclusion that jumping must be harmless if John jumps since 
there must be a safety net at the bottom. If the utility he derives from reaching the floor alive 
after jumping is higher than the one he gets by not jumping and if he is rational, in the sense 
of optimizing upon beliefs, then he should contingently jump as well! Assume now that the 
friend's decision should be made before John is actually at the top of the building. Will 
John's friend jump contingent on John's jumping? 

In a world in which John jumps, his friend gets some information that makes him 
change his decision (if we assume he would have not jumped in the absence of a net). 
However, John's friend could have updated his stock of beliefs to attribute the hypothetical 
occurrence of the jump to some unexplainable reason but kept the absence of a net, which 
he believes is a fact in the actual world where he has to decide whether to jump or not. 

 
2. The backward induction solution to the centipede game 

2.1 The centipede game 
 
Consider the following version of the Centipede game: there are two players, called 

them 1 and 2 respectively. Player 1 starts the game by deciding whether to take a pile of 
money that lies on the table. If he takes it the game ends and he gets a payoff (or utility 
value) equal to u1 whereas his opponent gets v1. If he leaves the money then player 2 has to 
decide upon the same type of actions; that is, between taking or leaving the money. Again if 
she takes it she gets a payoff of v2 whereas player 1 gets u2. If player 2 leaves the money 
then player 1 has the final move. It he takes, player 1 and player 2 get respectively u3 and v3.
Otherwise, they get payoffs equal to u4 and v4 respectively.  
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The pair of letters between parenthesis at the termination points represent the players' 
payoffs and they are such that   u1> u2 , u3> u4 and v2> v3 .

The numbers inside the circles represent the labels of the nodes. 
tn stands for taking the money at node n, n=1,2,3. 
ln stands for leaving the money at node n, n=1,2,3. 
The backward induction solution to this game has every player taking the money at 

each node, that is, playing "tn", for n=1,2,3 whether -on- or -off-the-equilibrium path. The 
argument briefly says that if player 1 gives player 2 the chance to play he would take the 
money, for he would expect the first player to do so at the last node. Knowing this, player 1 
decides to take the money at the first node. 

The controversial issue is that equilibrium play is based upon beliefs at nodes off-the-
equilibrium path that do not properly consider how the information which would be 
available at each stage is handled. In the counterfactual hypothesis that the second node is 
reached, the players are supposed to ignore that something counter to full rationality ought 
to have occurred, namely, that l1 has been played. The irrational nature of this play crucially 
depends on player 1's expectation about the behavior of player 2 at the next node which in 
turn, depends on player 2's expectation about player 1's further play. Yet, these beliefs are 
not updated. The relevant information to decide how to play is not what has been played,
but what it is expected to be played. The exception is the last node where the decision 
depends upon the comparison of payoffs that the player can obtain with certainty. Once 
some behavioral assumption is introduced, the action to be played at the last node will be 
determined, given that there are no ties in this game, and this backtracking reasoning will 
yield a sequence of choices independent of deviations. The question raised in the literature 
concerns this behavioral assumption at the last node. Why should player 2 expect player 1 to 
take the money at the third node if he already deviated? 

(u2,v2) (u3,v3)(u1,v1)

t 1 t 2 t 3

l 1 l 3

(u4,v4)1 32

l 2
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In the past years an agreement concerning the role of counterfactual scenarios has 
emerged within the literature (see Binmore [7], Bicchieri [5], Samet [18]). Also Aumann [2] 
who proves that common knowledge of rationality implies backward induction asserts that 
"substantive conditionals are not part of the formal apparatus, but they are important in 
interpreting four key concepts"...":strategy, conditional payoff, rationality at a vertex, and 
rationality" ([2] p.17). He asserts that the "if ...then" clauses involved in equilibrium are not 
material conditionals but substantive conditionals.4

2.2 Definitions and notation 

Our version of the centipede game can be represented by:  
(1) A finite set of players' labels I, I ={i,  i=1,2}.   
(2) A finite tree with an order of moves. The set of nodes' labels for players 1 and 2 is 

denoted respectively by N1 and  N2 and defined as N1 = {1,3}; N2 = {2}; The labels 
represent the order in which players move. The set of all nodes' labels is N ={n,  n=1,2,3}= 
N1∪N2 . N⊂N (set of natural numbers) 

Let Z be the set of terminal nodes' labels. Z={z1,z2,z3,z4}. For each z ∈ Z there is a 
unique path leading to it from the initial node. The path leading to the terminal node z is 
indicated by P(z). Therefore we have: 

 P(z1)=(t1);P(z2)=(l1t2),P(z3)=(l1l2t3),P(z4)=(l1l2l3). 
(3) A finite set of actions for each player available at each node: 
A1n = { a1n ,  a1n = tn, ln } n=1,3 ;  
A2n = { a2n ,  a2n = tn, ln } n=2 ;  
An = { an , an = tn, ln } set of actions available at node n (n=1,2,3).  
(4) A public story (hn) of the game at node n. It consists in the sequence of actions 

leading to node n from the initial node.5 In addition let hn+1  include the action taken at node 
n: 

hn+1={a1,.. an } an∈An ; n=1,2,3.  
Given that this is a game of perfect information, hn represents players' knowledge 

about the past play which leads to node n. Moreover, the set that represents the players' 
knowledge about the node at which they have to move is a singleton. By definition (h1=∅). 

Let H be the set of all terminal histories. Therefore H={P(z1);P(z2),P(z3),P(z4)}  

 
4 He acknowledges that the term "substantive" has been coined by economists only. A substantive 

conditional is a non material conditional and within his terminology a counterfactual is a substantive 

conditional with a false antecedent.  
5 This sequence is unique in extensive form games with perfect information.  



12 

Let us define P(z1) ≡ hz1,P(z2) ≡ hz2;P(z3) ≡ hz3;P(z4) ≡ hz4.
(5) A strategy for player i, (i=1,2) is defined as a set of maps. Given some previous 

history of play, each map assigns to every possible node, at which player i might find 
himself, an action from the set of feasible actions at that node. 

si : Ni → Ain ; Ain ⊂ Ai ,n ∈ Ni i=1,2 ; 
The sets of strategies for players 1 and 2 respectively are: 
S1={ t1t3 , t1l3 , l1t3 , l1l3 };  
S2={t2, l2 }
A strategy profile 's' is a list of strategies one for each player: s=(si)i∈ I

(6) Players' payoffs functions assign to each possible terminal history of the game a 
real number. Ui :H → R i=1,2 .  

(7) An information structure for each player (also called the player's state of mind) 
describing the player's knowledge, beliefs and hypotheses.  

In order to define these epistemic operators, we need to specify the language within 
which the framework is defined. This language is constructed upon two types of primitive 
propositions, or formulas: the ones denoting the play of an action by some player at some 
node and the ones reflecting the fact that some node has been reached.   

These primitive propositions or formulas will be denoted by: 
"n", which should be read as "node n is reached" (n=1,2,3) 
"ain" , which should be read as "action 'a' is played by player 'i' at node 'n' " 
"si" , which should be read as " strategy 's' is played by player 'i' ".  
Propositions will be generically denoted by P and Q. 
The set of primitive formulas is enlarged in the following way: 
(i) Atomic formulas or primitive predicates (as they have been defined above) are 

formulas; 
(ii) if p is a formula, then so is "~p"; 
(iii) if p and q are formulas, then so are "(p&q)" "(pvq)" and "(p �→q)";6

In addition, the set of primitive formulas is enlarged by the introduction of the 
following epistemic and doxastic operators:  

"Ki" : "i knows that" 
"Bi" : "i believes that" 
"Pi" : "it is possible, for all that i knows, that" 
"Ci" : "it is compatible with everything i knows, that" 

 
6 Notice that within this framework material implications can be expressed in terms of "~" and "&".  This is 

not the case for the counterfactual connective because its truth does not depend on the truth value of its 

components. 
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"~p" does not refer to the mere result of prefixing "not" to p. It refers rather to the 
corresponding negative sentence, often referred to as the contradictory of p.

i is a free individual symbol, that is, it denotes the agent named 'i' and p is an arbitrary 
sentence or predicate. 

The last condition to complete the description of our language is: 
(iv) if p is a formula and i a free individual symbol (which can take only names of 

persons as their substitution-values), then  "Ki", "Pi", "Bi", and  "Ci" are formulas. In each 
case, p is said to be the scope of the epistemic operator in question. 

 
2.3 Knowledge and Belief 

The study of the concepts of knowledge and belief together with their uses requires the 
consideration of a broad set of disciplines due to the complexity that the corresponding 
phenomena displays. There is on the one hand the obvious semantic and syntactic facets, 
and on the other, the psychoanalytical one.  

In the present essay, we are going to adopt an extremely narrow view of these 
phenomena. A player knows something iff he is actively aware of such a state and has the 
conviction that there is no need to collect further evidence to support his claim of 
knowledge. Under this assumption, if it is consistent to utter that "for all I know it is 
possible that p is the case", then it must be possible for p to turn out to be true without 
invalidating the knowledge I claim to have. If somebody claims to know that a certain 
proposition is true, then the corresponding proposition is true. We rule out the possibility of 
somebody forgetting something he knew and restrict the environment within which claims 
of knowledge are considered, to situations in which information does not change. When a 
new piece of information is acquired, a new instance starts from the epistemological point of 
view. Moreover, agent's knowledge is supposed to contain not only the primitive notions 
they are capable to assert they know but also all the logical implications of those sentences.  

Although we may show the arrival of an inference, we don't model the reasoning 
process behind it. Agents are already assumed to know all these possible chains of reasoning 
(concerning not only the knowledge about themselves but also those of their opponents); it 
is only the game theorist who performs or discovers the underlying reasoning. 

Beliefs, on the other hand, are supposed to have a different nature in the sense that 
beliefs can be contradicted by evidence that is not available to the agent. Notwithstanding, 
beliefs will be assumed to fulfill consistency requirements in the sense that if something is 
compatible with our beliefs, it must be possible for this statement to turn up to be true 
without forcing us to give up any of our beliefs. 
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Unless otherwise stated, the analysis followed in the present work is the logic of 
knowledge and belief developed in Hintikka [12].  

For the reader who is willing to skip the technical aspects explained in the remainder 
of section 2.3 there is a summary at the end of the section. 

2.3.1 Knowledge and the rules of consistency 
 
We assert that a statement is defensible if it is immune to certain kinds of criticisms. 

Knowing p and not knowing q when q logically follows from p, will be defined as 
indefensible. Indefensibility alludes to a failure (past, present or future) to follow the 
implications of what it is known. This is the notion that will be used from here onward.  In 
other words, if somebody claims that he does not know a logical consequence of something 
he knows he can be dissuaded by means of internal evidence forcing him to give up that 
previous claim about his knowledge. Therefore, within the present system of axioms, logic 
has epistemic consequences and this entails that the subjects of the epistemic operators 
possess logical omniscience. Hintikka doubts that the incapability of having logical 
omniscience should be defined as inconsistency. He proposes the term indefensibility to 
substitute it because, in his opinion, not knowing a logical implication of something we 
know should not be defined as inconsistency.  

In order to define the notion of defensibility we need to introduce the concept of a 
model set.  

Definition: A set of sentences µ is a model set iff satisfies the following conditions: 
(C.~)  If p ∈ µ, then not "~p" ∈ µ. That is, a model set can not have as members a 

proposition together with its negation. 
(C.&)  If "p&q" ∈ µ, then p ∈ µ and  q ∈ µ. The elements of a conjunction that 

belongs to a model set should belong as well. 
(C.v)  If "pvq" ∈ µ, then p ∈ µ or  q ∈ µ (or both). The elements of a disjunction 

that belongs to a model set should belong as well. 
(C.~~) If "~~p" ∈ µ, then p ∈ µ. If the double negation of a proposition belongs to a 

model set, then the proposition should also belong to the model set. To complete the 
description the De Morgan's rules for negation of conjunction and disjunction need to be 
introduced: 

(C.~&) If "~(p&q)" ∈ µ, then "~p" ∈ µ or  "~q" ∈ µ (or both). 
(C.~v) If "~(pvq)" ∈ µ, then "~p" ∈ µ and  "~q" ∈ µ.

This set of conditions will be named as the "C-rules".  
Definition: A set λ of sentences can be shown to be indefensible iff it cannot be 

embedded in a model set.  In other words, for λ to be defensible there should exist a possible 
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state of affairs in which all the members of λ are true and this in turn occurs iff there is a
consistent description of a possible state of affairs that includes all the members of λ. Our 
goal is to find a framework to characterize a defensible (generally called consistent) state of 
mind in terms knowledge and belief of an agent. For instance, when the notion of a model 
set is applied to an agent's knowledge, we will see that if an agent 'i' knows that proposition 
'p' is true, a defensible state of mind of this agent can not include the contradictory of 'p'. By 
the same token if 'i' knows that 'p' and 'q' are true then 'i' should also know that 'p' is true and 
that 'q' is true. The C-rules serve the purpose of defining the consistency of players' states of 
minds. 

 
2.3.2 Possible or Alternative worlds 

We have so far spoken about knowledge and belief and briefly defined the operator 
"Pi". Assume that we have some description of a state of affairs µ and that for all i knows 
in that state, it is possible that p. That is, "Pi p"  ∈ µ. The substance of the statement "Pi p"  
can not be given a proper meaning unless there exists a possible state of affairs, call it µ*, in 
which p would be true. However µ* need not be the actual state of affairs µ. A description 
of such state of affairs µ* will be called an alternative to µ with respect to i. Therefore, in 
order to define the defensibility of a set of sentences and give meaning to the notion of 
alternative worlds, we need to consider a set of models. Hintikka calls this set of model sets 
a model system. Within this framework the previous condition regarding the existence of 
alternative worlds can be formulated as follows: 

(C.P*) If "Pi p"  ∈ µ and if µ belongs to a model system Ω, then there is in Ω at least 
one alternative µ* to µ with respect to a such that p ∈ µ*. 

This condition guarantees that p is possible. In other words, if an agent thinks that for 
all he knows it is possible that 'p' is true, then there has to be an alternative state of mind 
consistent with the agent's actual state of mind in which 'p' is true. That is, without incurring 
in a contradiction, the agent should be able to conceive a hypothetical scenario in which 'p' 
is true. 

Hintikka also imposes the condition that everything i knows in some state of affairs µ
should be known in its alternative states of affairs: 

(C.KK*) If "Ki p"  ∈ µ and if µ* is an alternative to µ with respect to i in some model 
system Ω, then  "Ki p"  ∈ µ*. 

This means that alternative worlds should be epistemologically compatible with 
respect to the individual whose knowledge we are denoting. Alternative worlds do not lead 
the agent to contradict or discard knowledge. 

Additionally the following conditions needs to be imposed: 
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(C.K) If "Ki p"  ∈ µ, then p ∈ µ. This says that  knowledge cannot be wrong. In 
other words, if i knows that p then p is true. 

(C.~K) If "~Ki p"  ∈ µ, then "Pi ~p"  ∈ µ. This means that it is indefensible for i to 
utter that "he does not know whether p" unless it is really possible for all he knows that p
fails to be the case. 

(C.~P) If "~Pi p"  ∈ µ, then "Ki ~p"  ∈ µ. When i does not consider p possible then, i
knows that p is not true. 

 
Definition: a model system is a set of sets that satisfies the following conditions: 
i) each member behaves according the C-rules, (C.K), (C.~K) and (C.~P). 
ii) there exists a binary relation of alternativeness defined over its members that 

satisfies (C.KK*) and (C.P*).  
 
2.3.3 The relation of alternativeness 

I can be shown that (C.KK*) and (C.K) together imply: 
(C.K*) If "Ki p"  ∈ µ and if µ* is an alternative to µ with respect to i in some model 

system Ω then  p ∈ µ*. 
In other words, if i knows that p in his actual state of mind, then p must be true not 

only in that world but also in any alternative world with respect to i.
Under (C.K*), condition (C.K) can be replaced by: 
(C.refl) The relation of alternativeness is reflexive.  
That is, every world is an alternative to itself. From this it follows that: 
(C.min) In every model system each model set has at least one alternative. 
Moreover (C.min) together with (C.K*) imply: 
(C.k*) If "Ki p"  ∈ µ and if µ belongs to a model system Ω, then there is in Ω at least 

one alternative µ* to µ with respect to i such that p  ∈ µ*. 
The condition of transitiveness also holds for this binary relation and it is implied by 

the other conditions (for the proof see Hintikka [13] page 46). 
The alternativeness relation is reflexive, transitive but not symmetric. To see why the 

symmetry does not hold consider: 
µ={  "Ki p", p,"Pi u" } 
µ*= { "Ki p", p,"Ki h", h }
µ* is an alternative to µ with respect to the individual i because the state of affairs in  

µ* is compatible with what i knows in µ. Assume that u entails ~h. The additional 
knowledge in µ* is not incompatible with the knowledge in µ but with what i considers 
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possible in µ. However given that h entails ~u, then µ is not an alternative to µ* (see 
Hintikka [12] page 42).  

To conclude, we say that a member of a model system is accessible from another 
member, if and only if we can reach the former from the latter in a finite number of steps, 
each of which takes us from a model set to one of its alternatives.  

The different sets of rules that are equivalent to each other and that completely define 
the notion of knowledge are as follows: 

(C.P*) & (C.~K) & (C.~P) & (C.K)&(C.KK*) 
(C.P*) & (C.~K) & (C.~P) & (C.K)&(C.K*) &(C.trans) 
(C.P*) & (C.~K) & (C.~P) & (C.refl) & (C.K*) & (C.trans) 
(C.P*) & (C.~K) & (C.~P) & (C.refl) & (C.K*) & (C.KK*) 
 
2.3.4 Belief and the rules of consistency 

We can replace all the previous conditions with the exception of (C.K) by replacing 
the operators "K" and "P" for "B" and "C" respectively. The condition (C.K) does not have a 
doxastic7 alternative because it expresses that whatever somebody knows has to be true, 
which by definition obviously does not hold in the case of beliefs. We already stated that 
(C.refl) is a consequence of (C.K*) and (C.K). Therefore the reflexiveness does not hold in 
the case of beliefs. The condition that is valid for beliefs and that will be used here is the 
following (C.b*), which is the counterpart of (C.k*): 

(C.b*) If "Bi p"  ∈ µ and if µ belongs to a model system Ω, then there is in Ω at least 
one alternative µ* to µ with respect to i such that p ∈ µ*. 

If i believes that p, then there is a possible world alternative to the actual with respect 
to i in which p is true. 

The different sets of rules that are equivalent to each other and that completely define 
the notion of belief are as follows: 

(C.b*)&(C.B*)&(C.BB*) 
(C.b*)&(C.B*)&(C.trans) 
In the remaining sub-sections we characterize the interaction of knowledge and belief. 

This is necessary because the players' states of minds will combine these two different 
operators. We will for instance assume that players have knowledge about the rules and 
structure of the game but we will only assume that they possess beliefs concerning out-of-
equilibrium play. The extent to which rationality can be known will be addressed in section 
3. 

 
7 A doxastic alternative is an alternative in terms of opinion not in terms of knowledge. 
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2.3.5 The interaction of the knowledge and belief operators 

The alternatives to which the knowledge operator applies will be called epistemic 
alternatives whereas the ones to which the belief operator applies will be called doxastic 
alternatives. To be more precise, these denominations should correspondingly replace the 
previous notions of "alternative". 

Definition: an epistemic (doxastic) alternative to an actual state of affairs is a 
description of a state of affairs that is  knowledge(belief)-consistent.

Once this difference between alternatives in terms of knowledge and belief has been 
acknowledged, it is easy to see that some conditions that hold for epistemic alternatives do 
not hold for doxastic alternatives. We already saw that (C.refl) failed to hold for the belief 
operator what means that it does not hold for doxastic alternatives. 

In addition, consider the following condition: 
(C.KK* dox) If "Ki p"  ∈ µ and if µ* is a doxastic alternative to µ with respect to i in 

some model system Ω then  "Ki p"  ∈ µ*. 
In other words, every world which is an alternative in terms of i's opinion should be 

compatible within i's knowledge. 
This condition can be shown to be equivalent to: 
(C.KB) If "Ki p"  then  "BiKi p"  ∈ µ. That is, whenever one knows something, one 

believes that one knows it. Moreover within the present system whenever one knows 
something one knows that one knows it. That is "KiKi q" is equivalent to "Ki q". Therefore, 
all the rule (C.KB) establishes is that whatever one knows one believes it. In other words, if 
"Ki q"  then  "Bi q"  ∈ µ.

Moreover, (C.KB) also carries the logical omniscience assumption in the sense that 
whatever follows logically from our knowledge should be believed: it would be indefensible
not to believe something that logically follows from our knowledge. Therefore, (C.KB) and 
(C.KK* dox) will be accepted as conditions. 

An interesting feature is that the following rule can not be accepted because it would 
imply that beliefs can not be given up: 

(C.BK) If "Bi p"  ∈ µ then  "KiBi p"  ∈ µ. This condition is equivalent to 
(C.BB*epistemic) and requires that whenever one believes something one knows that one 
believes it. We assume that by gathering more information one can give up beliefs but not 
knowledge.  
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2.3.6 Self-sustenance 

So far, we have defined the concept of defensibility as a feature of a set of 
propositions. The notion of self-sustenance alludes to the validity of statements. 

definition: A statement p is self-sustaining iff the set {"~p"} is indefensible. 
Therefore, "p ⊃ q" is self-sustaining iff the set {p, "~q"} is indefensible. 

If "p ⊃ q" is self-sustaining we say that p virtually implies q. When p virtually implies 
q and vice versa then p and q are virtually equivalent. In this case, note that "Ki p ⊃ Ki q." is 
self-sustaining what means that if a knows that p and pursues the consequences of this item 
of knowledge far enough he will also come to know that q. In addition, it can be proved that 
under the proposed set of rules "Ki p & Ki q" virtually implies "Ki (p & q)".  

Moreover, within this framework it can be proved that "Ki Ki p" and "Ki p" are 
virtually equivalent whereas "Bi p" virtually implies "BiBi p" but not vice versa (Hintikka 
[13] page 124).

2.3.7 Common Knowledge and Belief 
 
The previous knowledge operators can be replaced by higher degrees of knowledge 

operators without invalidating any of the accepted rules. This is due to the fact that "Ki Ki' 
p" and "Ki' p" are virtually equivalent for all i and i'. The common knowledge operator will 
be denoted by "ck" and "ck p" will be read as: "there is common knowledge that p." 

The common knowledge operator can also be defined as the limit of a mutual 
knowledge operator of level k where k goes to infinity. In the case of two individuals the 
mutual knowledge operator can be defined as: MK k

(i,i')≡ (Ki Ki'...Ki p)&(Ki' Ki...Ki' p) where 
each parenthesis has 'k' knowledge operators. 

Common belief (cb) is equally defined in spirit but it does not result from the mere 
substitution of the knowledge operator by the belief operator on the previous formula. This 
is because within this framework to believe that one believes does not imply that one 
believes it. Therefore common belief should be defined in terms of the conjunction of all the 
degrees of mutual belief and can not be reduced to an expression like MK k(i,i').

Summary of section 2.3 
 
In section 2.3, we have defined the conditions under which an agent's state of mind is 

defensible. A defensible state of mind for a player 'i' can be briefly defined as a set of 
propositions that represent i's knowledge and beliefs such that 'i' does not contradict 
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himself. For instance, a player's state of mind is indefensible when he asserts he does not 
know a logical consequence of some proposition he claims to know (remember that players 
are supposed to have logical omniscience).  Other examples of indefensible states of minds 
are: i) the ones that include 'p' and '~p' , ii) the ones that contain 'p&q'  but do not include 
either 'p' or 'q' or both, iii) the ones that contain 'p or q'  but neither 'p' nor 'q', etc.8

As we already stated, the main difference between knowledge and belief is that only 
the former can not be contradicted by observation. What a player claims to know needs to be 
true. In addition, it also follows from Hintikka's logic that when a player knows something 
then he believes it. However, the contrapositive is not true: a player may believe something 
without knowing that he believes it (otherwise beliefs could not be given up).  

We have also introduced the notion of alternative worlds to represent players' 
conjectures regarding hypothetical scenarios given their actual state of knowledge and 
belief. The conditions that these alternative worlds need to satisfy are the following: 
existence: i) if some proposition is considered possible for all an agent knows, then there 
should exist at least one alternative world compatible with the actual state of mind of this 
agent where this proposition is true, ii) if an agent believes that a proposition is true, then 
there is at least one alternative world compatible with the knowledge he possess in his 
actual state of mind in which the proposition is true. Preservation of knowledge: iii) 
whatever is known in the actual state of mind should be known in every alternative world. 

To conclude, the common knowledge operator has been defined as usual. The sets of 
rules of consistency or defensibility are naturally extended to higher degrees of knowledge 
given that within the present language formulas can always be extended by the application 
of additional knowledge operators. Consider for instance the proposition "player i knows 
that p", which is true in player i's state of mind. Within the present framework, every 
alternative world with respect to 'i' should be such that this proposition is true in it. The 
same would occur to the proposition "player i knows that player j knows that p" if this 
proposition also belonged to i' actual state of mind.  

The notion of mutual belief has also been introduced in the same spirit as the mutual 
knowledge operator. That is, mutual belief of degree 'n' is defined as: everybody believes 
that everybody believes that everybody... and so on, repeating the operator "everybody 
believes" 'n' times. It is worth noticing that within this framework to believe that one 
believes something does not imply that one believes it. Nevertheless, if the mutual belief 
operator is defined as the conjunction of the different degrees of knowledge then we can 

 
8 'p' and 'q' are formulas within our language L. For instance these are constructions of the following form: 

"player 1 takes the money at node 1", "player 2 knows that player 1 knows that player 2 would have taken the 

money had node 2 been reached" etc. 
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obtain implications of the following form: if everybody believes that everybody believes 
then, everybody believes. 

 
2.4 The backward induction algorithm 
 
Before stating the definition of the backward induction algorithm we need to introduce 

the following concepts:  
1) Let G(hn') denote the game that given the public history begins at node n'. The 

payoff functions in this game will be ui(P(zn+1)) for n≥n' n=1,2,3. P(zn+1) is the final story of 
the game that finishes at the terminal node zn+1. A strategy profile s of the whole game 
induces a strategy profile s/hn' on any G(hn') in the following way: for each player i, si/hn' is 
simply the restriction of si to the histories consistent with hn'.

2) A Nash equilibrium is a strategy profile that satisfies the following requirement:  
ui (si,s-i) ≥ ui (s'i,s-i) for all s'i.
The centipede game under consideration has two Nash equilibria: (t1t3,t2) and (t1l3,t2). 
The backward induction equilibrium can be defined in the following way: 
Definition: a strategy profile s of a finite extensive form game with perfect 

information is a backward induction equilibrium if for every hn', the restriction s/hn' to G(hn')
is a Nash equilibrium of G(hn') (Fudenberg and Tirole [10]). 

The backward induction solution in our game is (t1t3,t2) and the standard argument to 
support it can be represented as follows: 

Under the assumption of common knowledge of subgame rationality we can assert 
that 

{"3" �→ "t3"}  is true. 
This implies that,  
{"2" & {"3" �→ "t3"} �→ "t2"}  is also true, 
and  therefore, 
"1" ⇒ ("t1t3" & "t2") 
Let us denote the two previous counterfactuals by C3 and C2 respectively. Under the 

assumption of common knowledge of rationality the truth of C3 implies the truth of C2 and 
therefore the play of "t1" by the root player. We start at the last node by solving C3. In the 
next step we consider C2, the counterfactual at the predecessor node. The link between these 
steps is that C3 should be part of the set of true propositions or statements that conjoined 
with "2" determine the truth of C2. In other words, player 2 would have taken the money at 
the second node only if he thought that the money would have been taken at the third node. 
As we can see, the crucial issue we have to address is whether C3 and C2 are simultaneously 
true.  
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With this purpose, we construct a test for the backward induction equilibrium by 
considering strategies as contingent events and then introducing a theory to solve these 
counterfactuals. Within each of the approaches considered in the next section, the 
equilibrium strategies will result as the outcome of the solutions to these subjunctive 
conditionals. This result will depend upon the payoff structure and the knowledge and 
beliefs that players commonly hold at all possible nodes. 

 
3. The backward induction solution and the theories of counterfactuals 

In this section two different theories of counterfactuals are interpreted to analyze the 
backward induction algorithm.9 Before doing so, a few preliminary issues should be 
addressed.  

The factual or actual world is the world where players play the backward induction 
solution. In this world, player 1 takes the money at node 1 and the game ends without player 
2 being called to play. Nevertheless, players need a plan or a hypothesis in this world for the 
counterfactual scenario in which at least one of the remaining nodes is reached. Two issues 
need to be solved concerning this matter: i) the epistemological status of this contingent 
play and ii) the truth condition of the its hypothetical conjecture. Can there be any mutual 
knowledge concerning player 2's strategy? and, is it true that "had she had the chance to 
play, she would have played t2"?  To answer these questions we first need to consider 
whether players can know that their opponents are rational or that they will behave in a 
certain way. 

 
3.1 The concept of rationality 

The task of making compatible the assumption of rationality with the occurrence of 
deviations, so that these do not in itself imply a contradiction, requires a definition of 
rationality capable of capturing contingent play. With this aim, we consider the existence of 
three levels of rationality. Rationality as a capability of reasoning will be understood as 
maximizing behavior subject to exogenous beliefs. This will be defined as rationality ex 
ante to stress the idea that beliefs need not be correct. Rationality ex post will enlarge the 
concept of rationality ex ante by incorporating a process for belief formation or updating 
that is rational, in the sense of being free of contradictions. Finally, the third level of 
rationality alludes to the capability of acting upon decisions. To be rational in this last sense 
simply entails the absence of mistakes. 

 
9 For a detailed presentation see Lewis [14] (alternatively Lewis [15] (pages 57-85)) and Bennett [3]. 
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Definition: a player is rational ex ante if he plays a best response given his beliefs, or 

hypotheses about his opponent's play, whatever those beliefs are. 
Definition: a player is rational ex post if he plays a best response given rationally 

formed beliefs or hypotheses about his opponent's play. "Rationally formed beliefs" means 
that the players have the capacity of correctly hypothesize about their opponent's contingent 
play given their own knowledge, a behavioral assumption and a background theory which is 
commonly held. This means that the set that represents each players' state of mind should be 
a defensible set.

There is another important concept that is necessary to consider in extensive form 
games. This is the concept of node rationality. The aim is to separate rationality at different 
nodes, because a player who observes a deviation needs to conjecture about the rationality 
of his opponents at future nodes. The information he receives after a deviation may have 
some implications about further node rationality. This will depend on the theory of 
counterfactuals that the player is using. 

Definition: player 'i' is rational at node n∈Ni if he plays a best response given the 
history of previous play hn and his hypotheses or conjectures about future play.10 This is a 
type of ex ante rationality in the sense that a player may deviate and still be node-rational at 
that node. 

Definition: player 'i' is subgame rational if he is rational at node n, ∇ n∈Ni .
Definition: player 'i' is fully rational iff he is ex-post subgame rational and does not 

make mistakes. 
 
3.1.1 Knowledge and Rationality 

The relationship between rationality and observation is a difficult matter to establish. 
We think on the one hand that there can not be knowledge concerning actions that are not 
actually played in equilibrium and therefore, there cannot be mutual knowledge of full 
rationality. In other words, if knowledge of rationality is conferred by observation then there 
can not be knowledge of rationality at all nodes if some of them are not reached under 
equilibrium. On the other hand, a player may play in a way his opponent defines as 
"rational" by pure error and therefore, observation would not necessarily provide enough 
information to establish this type of knowledge. It is clear at this point that either a bayesian 

 
10 "hypotheses" here stands for: how the player evaluates counterfactuals about future nodes based upon the 

play that has led to his/her node and some a priori or primitive assumptions about the rationality of the 

opponent. 
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view is adopted, so that every possible explanation of an observation is given a positive 
probability, or an assumption is introduced so as to narrow down the indeterminacy of this 
relationship. We will not allow for mistakes as a behavioral assumption within the 
equilibrium world. Mistakes might only happen in non-equilibrium words. 

Moreover, players need knowledge or beliefs a priori, regarding the rationality of their 
opponents and their opponents' conjectures, because this can not be obtained from 
experience within the game that is about to be played. The concept of ex ante rationality was 
introduced to provide a notion weak enough so that knowledge may be justified. One could 
think that players might know that their opponents maximize given their beliefs whatever 
they are. The goal at this respect, is to resemble the typical assumption of common 
knowledge in order to match our results with those in the literature.11 Ex ante rationality 
alludes basically to a capacity and to have knowledge concerning the ex ante rationality of a 
player, means to know that he is a maximizer, that is, that he has the capacity of choosing 
the action that optimizes his payoff given his beliefs. This assumption can be only justified 
in very special cases and for this reason we will also deal with the case of common belief in 
node rationality. Notice that this capacity to decide does not mean that the player will 
actually perform what he chooses. This is what we defined as full rationality. 

In addition, we need to consider that information might be updated as the game 
evolves and that this might involve a "change in knowledge" within the game, even within 
the introspective framework we are dealing with in the present work. Clearly when a 
deviation occurs players acquire a new piece of "unexpected" information. The concept of or 
ex post rationality is relevant at this respect because it involves the complete chain of 
reasoning. A player that deviates might be ex ante rational. However, if there is no 
consistent set of beliefs that support the deviation he or she will be considered ex post 
irrational. 

Regarding the truth condition of the contingent reasoning involved in equilibrium, 
players may hold beliefs about these conditionals based upon their mutual knowledge or 
belief of a primitive behavioral assumption plus some theory of how to infer conclusions 
regarding the observation of non expected phenomena. The counterfactual occurrence of a 
deviation will provide in itself an information to which the corresponding theory of 
counterfactual should attach some value. 

We will assume that there is common knowledge of the framework or theory that 
players use to analyze hypothetical scenarios as a necessary condition to justify an 

 
11 Belief in any of these types of rationality can be easily justified in the sense that players may believe that 

their opponents are rational as long as they do not confront a piece of observation that assures them that this 

is impossible. 
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equilibrium outcome. Whichever theory of counterfactuals is used to analyze an equilibrium 
notion, it needs to be at least mutually believed or held amongst the players. This implies 
that to have a well founded equilibrium concept in games with perfect information, there 
should be some mutual agreement regarding the principle by which beliefs at all nodes are 
updated (whatever this principle is).  

In the following two sections, we present our argument based upon Lewis' and 
Bennett's approaches to counterfactuals. In the apendix, a formalization of these results 
within Hintikka's semantical system will be presented. 

 
3.2 Lewis' theory of counterfactuals 
 
Lewis' theory is based on two fundamental concepts: i) the asymmetric openness of 

time and ii) the notion of possible worlds.12 
The first notion can be summarized by the idea that the future is counterfactually 

dependent on the present, whereas the past is counterfactually independent of it. Although 
the past as well as the future are unique under Lewis' assumption of determinism, the past of 
the factual world provides an information that the future does not contain and that the 
present should relax so as to produce the occurrence of the counterfactual antecedent.  

The second notion is that of the possible world. This is an epistemological entity; a 
scenario that despite its actual possibility can be conceived within our mind's framework. In 
terms of the semantical system presented in section 2, a world is defined as a defensible set 
of sentences that state what the player knows, believes and thinks it is possible (compatible) 
given his knowledge (beliefs). An alternative world to the actual world with respect to 'i' 
given a proposition 'p', is a possible world which is knowledge-compatible with the actual 
world with respect to 'i', and one in which 'p' is true (see section 2). In our case, the actual 
world is the world where the players play (t1t3,t2); 'p' could be 'l1', that is, “player 1 left the 
money at node 1” or 'l2', that is, “player 2 left the money at node 2”. Possible l1-worlds are 
worlds where player 1 left the money at node 1. These are worlds where either (l1t3,t2), 
(l1t3,l2), (l1l3,t2) or (l1l3,l2) are played.13 In every l1-world, players have certain knowledge 
and beliefs whose consistency and closeness to the (t1t3,t2)-world we are going to examine. 

Lewis assumes that there exists a primitive relation of comparative similarity amongst 
possible worlds. Despite the fact that the principle that defines this ordering is constructed 
upon our experiences and therefore context dependent, Lewis assumes that whatever this 

 
12 For more detailed exposition see [14] and [15]. 
13 Possible l2-worlds are worlds where player 2 left the money at node 2 and where player 1 left the money at 

node 1 (worlds, where node 3 has been reached); These are worlds where either (l1t3,l2) or (l1l3,l2) are played.  
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principle is, it is sufficiently well developed to allow communication between people. The 
impreciseness of the closeness relationship is due to the intrinsic nature of counterfactuals 
and possible worlds theories are subject to this criticism.  

Lewis describes four types of worlds or counterfactual scenarios:  
The first world, w1, is in matters of facts similar to the actual world, w0, until shortly 

before the deviation is supposed to occur. At the antecedent time (tP) "the deterministic laws 
of w0 are violated at w1 in some simple, localized, inconspicuous way. A tiny miracle takes 
place." ([14] page 44). The occurrence of the deviation does not necessarily imply that the 
player chose to deviate. It only implies that he did it. A "miracle" is a metaphor to conceive 
this thought experiment. No further "miracles" occur and after tP. At w1, a miracle could be 
represented by a mistake that produces the corresponding miraculous deviation. 

The second world, w2, contains no miracles. The deterministic laws of w0 hold 
throughout the whole domain. Given that these two worlds differ at least in the occurrence 
of the deviation and have the same 'laws', then it must be the case that they do not agree in 
matters of particular facts neither before nor after the occurrence of the antecedent. In this 
case, no miracle produces the deviation. In terms of game theory, off the equilibrium play 
must arise as the consequence of an intended action. However, if players are still rational, 
which is the assumption we want to consider, it ought to be that their beliefs justified that 
deviation. To reconcile "rationality" with "deviations" we introduced the definition of node-
rationality and ex-ante rationality. Otherwise, a deviation would in itself be a contradictory 
or impossible event and this would render all the counterfactuals vacuously true providing 
an inappropriate foundation. 

The third world, w3, has perfect match in terms of facts with w0 until the deviation. At 
that time a miracle causes the corresponding off the equilibrium play. Immediately after, a 
small miracle takes place so as to make the consequent of the counterfactual false. 

The fourth world, w4, is alike w0 until the deviation obtains. After tP a widespread 
second miracle occurs that erases the effects of the deviation in such a way that the 
consequent is false and no traces of the antecedent deviating play are found. 

Lewis’ theory: P �→Q is true iff either (1) there are no possible P-worlds (in which 
case  P �→Q is vacuously true) (2) The closest P-world to the actual world, w0, is a Q-
world or (3) when there is no unique closest P-world, some P.Q-world is closer to w0 than 
any P.~Q-world. 

To apply this criteria we need to define or impose some ordering of the worlds. 
Lewis defines the closeness relationship in accordance with his requirement of the 

asymmetry of counterfactual dependence by offering a ranking of miracles. As it can be 
seen, there is a trade off between facts and miracles and the closeness or similarity criteria. 
The longer the region of perfect match the bigger the miracle we need to produce the 
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antecedent and vice versa. On the other hand, the farther away in the past the factual 
discrepancy occurs the smallest the required miracle. In the limit a complete divergence of 
facts until minus infinity can bring a counterfactual world without the need of a miracle. 
Compare for example w1 with w2. No miracles are allowed in w2 what means that under 
determinism these worlds have never coincided in the past. The deviation lawfully occurs 
due to some different belief.   

In Lewis' opinion a world like the previous w1 will be the typical candidate for the 
closest world because "a lot of perfect match of particular fact is worth a little miracle" ([14] 
p. 45). In Lewis’ theory worlds would be ranked from the closest to the farthest in the 
following way: w1,w2,w3,w4. We'll come back to this discussion because Bennett's theory 
does not allow for miraculous worlds, so that only type-w2-worlds are considered.  

The asymmetry of counterfactual dependence also brings the result that the miracle at 
w4, that produces the reconvergence to w0, is bigger than the one that produced the 
divergence. Given that the past is fixed, we need a broader miracle to erase every 
consequence of the divergent miracle. Therefore, w4, that contains one small divergent 
miracle and one big reconvergent miracle, ought to be less close to w0 than w3 for this last 
world contains two small miracles. On the other hand, w1 is ranked closer to w0 than w3

because it contains only one small miracle. In matters of facts, w2 is the farthest from w0.
The complete absence of miracles can only be gained by a total divergence of the past. 
However, w2 is ranked farther from w0 than w1 due to the assumed independence of 
counterfactuals with respect to the past.   

The asymmetric openness of time together with Lewis' bias towards the importance of 
facts previous to tP, allows fixing the facts or parameters that we want to keep constant to 
analyze the counterfactual hypothesis. Within w1, the exogenous variables will be the 
players' intentions concerning their rational play. Therefore deviations will not imply a 
revision to the belief that players are node rational at future nodes. Within this world players 
do not intend to deviate, the occurrence of a deviation is miraculous in the sense that it 
constitutes a thought experiment that captures all the features of the actual world with the 
exception of the deviation; it only affects the map from decisions to actions in the 
hypothetical case of a deviation but not in the actual world.

Let us start by examining C3 under the assumption of common belief of node 
rationality.14 We first need to search for the closest hypothetical world where a deviation 
occurs. Within Lewis' paradigm, the smallest miracle that can produce a "3"-world (a world 

 
14 Within our interpretation of this theory, common knowledge of node rationality yields the same results. 

Moreover, we could have as well assumed common belief in the theory to analyze counterfactual scenarios 

instead of common knowledge. 
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where node 3 is reached), without bringing an inconsistency between rationality and 
deviations, is one in which some tremble caused the previous players to leave the money. 
No further miracles are allowed so as to resemble behavior in the actual world as close as 
possible. Under any definition of rationality15 this possible "3"-world is a "t3"-world given 
that new miracles are ruled out (this means that the player at the last node can not make a 
mistake). Furthermore, this world, call it wR, is under Lewis' metric the closest to the 
equilibrium world w0 that allows us to assert the truth of C3. Note that there could be other 
worlds different from wR in which "3" is true. Clearly the case in which players 1 and 2 are 
both irrational (name it wI). In this case, player 1 would play l3 so that the counterfactual C3

is false.16 However, under the assumption of rationality, wR should be closer to the 
equilibrium world than wI what brings C3 true. The world of trembles is another type of 
world where C3 may be false although with probability approaching zero. Note again that 
the deviation does not occur in the actual world. However, under this framework a possible 
let us say, l1-world is a world where no trembles are further expected.17 

Under our interpretation of Lewis' theory, deviations are not incompatible with 
players' ex post rationality because players need not behave irrationally again after a 
deviation. Deviations are incompatible with full rationality. Nevertheless, there is a 
difference between the counterfactuals C3 and  C2 in terms of the informational structure 
needed to support them and their connection to rationality. At the end of the game, 
expectations about the opponent's rationality do not count18. But this is not the case at node 
2, where the task of making compatible the assumption of rationality with the occurrence of 
the necessary previous deviations (so that it does not in itself imply either a contradiction or 
the expectation that C3 is false) requires a definition of rationality capable of capturing 
contingent play. With that aim, the concept of node rationality above stated is to be used at 
this stage. Under this definition, a player may deviate and still be node-rational. This feature 
will be crucial within the next framework where intentional play is assumed. 

It has been already asserted that at the second node, the truth of C3 can not be known 
to player 2 (remember that we are assuming common belief); however, the truth of C3

together with the truth condition of any other counterfactual can be hypothesized on the 

 
15 Irrationality it is not defined here as a particular case of rationality. Rationality and irrationality are meant 

to be two disjoint categories. Given some beliefs at a node, the rational behaviour is to choose the action that 

yields the highest payoff what is a trivial problem at the last node since there are no ties in this game. 
16 (P �→Q) is false iff  (P �→~Q) is true. See [15]. 
17 Within the trembling hand refinement the probability of trembles goes to zero within the actual or 

equilibrium world. Outside this world, trembles at every node are possible but uncorrelated. 
18 It is assumed here that players have no uncertainty regarding all the payoffs in the game. 
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basis of the common belief of node-rationality, that is all that will be required in the present 
analysis. As a consequence of this assumption the truth of C3 is commonly believed.19 

Consider now C2. We have to establish whether "t2" is true in the closest ["2"&C3]-
world. In this world, a miracle produces the play of l1 by player 1 so that player 2 gets the 
chance to play. The decision at that node will depend on what he expects player 1 to play at 
the third node. To begin with, we have to find a world in which the conjunction ["2"&C3] is 
not false. Consider first the following candidates for possible "2"-worlds:  

wR: where a miracle consisting of a mistake causes the previous deviation but contains 
no further breaches of laws,  

wR': a world where player 1 is node rational at node 1 but has the wrong beliefs about 
player 2's rationality,  

wR'': where player 1's beliefs are right about the irrationality of player 2 and  
wI : where player 1 is the only irrational player.  
Notice that in the last three worlds deviations are intentional that is, they do not 

contain miracles while the first does. The crucial question is: in which of these worlds 
would C3 be true?20 

For expositional purposes let us represent these worlds in terms of the rationality of 
the players and the events that hold true in them: 

 
World  Player 1   Player 2     Type of world 
wR subgame rational & mistakes   subgame rational      l1t3,t2-world 

wR' subgame rational with wrong beliefs subgame rational      l1t3,t2-world 

wR'' subgame rational with right beliefs subgame irrational    l1t3 ,l2-world 

wI subgame irrational    subgame rational       l1l3,l2-world 
 
The first three candidates are worlds at which player 1 is node-rational at all nodes, so 

in any of them C3 is true. We rule out wI as a possible closest world within this approach. 
Now we have to find the closest deviation-world and see whether "t2" is true in it.21 

19 Common belief of node rationality is sufficient for the truth of C3 ; so is common belief of subgame 

rationality that is an stronger assumption.  
20 Another important question, that we do not address here is which of these worlds is more sensible as an 

explanation of what went wrong. We do not postulate that players do believe in mistakes, we only look for 

the logical implications of that assumption which is consistent with our interpretation of Lewis’ criterion.  
21 In case of a tie regarding the closeness of the worlds with respect to w0 , C2 is true iff a [wj &"t2"] world 

is closer to w0 than a [wj &~"t2"] world, where j denotes the equally distant worlds. 
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The world wR'' can be eliminated because player 2's irrationality ranks it further from 
the others in terms of features that should be preserved. So, we reduce the set of possible 
worlds to wR and wR' . Although these two worlds are l1t3,t2-worlds it is interesting to see 
which one is the closest in order to compare it with Bennett's theory of counterfactuals 
which will be introduced in the next section. First note that wR' is a w2 type of world. There 
are no miracles, given that player 1's play is intentionally guided by some beliefs. However, 
these beliefs are not compatible with the assumption of common belief of players' subgame 
rationality. To go from w0 to wR' we need to change a feature of the actual world, that is 
the belief of player 1 about player 2's rationality which was supposed to have a parametrical 
role under our assumption of rationality. Lewis does not allow for this change in crucial 
parameters. Therefore, we are left with wR where player 2 is supposed to play t2 given the 
assumption of node rationality.22 In this way we obtain the backward induction solution. 

There are some relevant issues at this point. It is claimed that the size of the required 
miracle that produces a deviation up to the last node of the game increases with the number 
of nodes in this game and that this may disturb the previous ranking.23 This is a valid and 
interesting issue and it is beyond the goal of this paper, which deals with a tree-legged 
centipede game. Nevertheless, even if we consider that correlated mistakes would produce a 
smaller departure from the actual world, capable of bringing all the deviations that are 
needed, this will not alter the truth of the counterfactual at the last node when no further 
miracles are expected and when the last player is node-rational. This is due to the fact that 
every "3"- world is a t3-world under our assumptions of rationality. If the truth of C3 is 
commonly believed then the previous argument should unravel by backward induction.  The 
key element in this argument is that beliefs are "revised" in such a way that common belief
of node rationality is still possible after a deviation. Assume player 1 plays l1 believing that 
player 2 will therefore believe that he is irrational and very likely to leave the money at node 
3. Assume also that, player 1 plans to take the money at the third node. All these 
propositions could be commonly believed only if players had incomplete information about 
the existence of irrational players in the actual world (see Binmore [6], McKelvey and 
Palfrey [16] and Reny [17]). It should be said that this is another way to model this game 
and that other equilibria arise. However, it is not the only way to think about deviations.       

 
22 It could be said as it is implied in Binmore [7] that given player 1's deviation now player 2 may expect the 

play of l3 at the last node, justifying in this way the play of l2. However this is still incompatible with the 

truth of C3 under the assumption of common knowledge of node rationality when deviations are conceived as 

thought experiments o small miracles in terms of Lewis' approach.  
23 This is one of Binmore's remarks. See [6] 
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Given our definitions, ex ante rationality can be mutually known among the players if 
it is possible for them to know this as a feature or capacity of their opponents. That is, if 
rationality is considered to be a disposition. In this case, we can keep the assumption that 
actions are not necessarily known to the players. All players might know is their opponent's 
capacity to optimize given his beliefs. The previous argument also holds if this alternative 
view of rationality is accepted and knowledge is postulated instead of belief. 
 

3.3 Bennett's theory of counterfactuals 

Under Bennett's theory of counterfactuals, the past can counterfactually depend on the 
future because no miracles are allowed to keep the closeness in facts to the antecedent time. 
In this case, if something contrary to fact is observed this implies that some previous 
conditions must have been different for this predicate to have occurred.  

As it was asserted, under the assumption of node rationality a player may deviate and 
still be node and subgame rational depending on the beliefs he holds at the corresponding 
nodes about future contingent play. 

Under our interpretation of Bennett's theory, beliefs are the endogenous variables that 
support hypothetical play. In Lewis' approach, players are rational and miraculously off-the-
equilibrium nodes are reached. Under our interpretation of Bennett's theory, on the other 
hand, deviations from a certain equilibrium should be explained by beliefs that make this 
behavior a rational choice. 

Definition: It is said that (P �→ Q) is true à la Bennett if Q is true at all the 
antecedent time-closest-causally possible P-worlds. That is, we start at tP, the moment in 
which the deviation occurs, then we lawfully unfold the facts in both forwards and 
backward directions. If Q is true in each of these worlds then the counterfactual is true. In 
other words, once the deviation occurred, we reason backward by finding the corresponding 
beliefs that the players ought to have had in order to have played node rationally. With these 
beliefs, we unfold forwards the sequence of facts to see if, in this world, the counterfactual 
consequent is true. This treatment makes beliefs endogenous and rationality exogenous 
because the mean by which the deviation occurred is derived as a residual instead of being 
assumed. Therefore, there is no need to assume a theory of mistakes to justify the 
occurrence of the counterfactual antecedent.   

Let us start at a world in which, without any violations to the assumption of 
rationality, the second node is reached, for we have already seen why C3 is true under any 
theory of counterfactuals and any definition of rationality. Starting at a world where the 
second node is reached, we have to unfold the consequences in both directions of time and 
see whether "t2" obtains. At this node, player 2 has to decide whether to play the equilibrium 
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action or not. This choice should be guided by the expected play at the third node that would 
have resulted had that node been reached. Bennett's worlds are w2-type of worlds; in terms 
of the previously defined worlds, they are worlds like wR' or wR''. Following Lewis, in the 
previous section we ranked wR as closer to w0 than wR' or wR''. Bennett's approach does not 
allow for a world like wR so this case is ruled out. Moreover, we discard worlds like wI for 
being farther from the actual world in which players are rational by assumption. 

Bennett's criterion and the assumption of rationality lead to the conclusion that had 
node 2 been reached, then the play of l1 by player 1 ought to have been motivated by the 
belief that player 2 would play l2 at that node. Within our interpretation of Bennett's worlds, 
deviations are intentional, that is, players are supposed to have had a reason for deviating. 
However, both players expect that player 1 would have played t3 had node 3 been reached 
based on the common belief of node rationality. 

Consider first a world like wR'. If, due to the commonality of the belief about the play 
at node 3 and the node rationality of player 2, it is implied that player 2 would have played 
t2 had node 2 been reached, then this implies that either player 1 is node-rational at node 1 
and the commonality in the belief of "t2" can not be held, or that player 1 is node irrational 
at node 1. Therefore, if player 1 is supposed to be ex post rational at all nodes (as the 
standard argument goes) then the truth of  C2 can not be commonly held. On the other hand, 
if we keep the common belief on C2, we have to rule out common belief in subgame 
rationality. 

Consider a world like wR''. Player 1 is not mistaken about his beliefs regarding player 
2's play and he is node rational at all nodes; however, player 2 is not node rational. In this 
world player 2 plays or l2 so that C2 is not true. But this type of world should be farther than 
wR' because in wR' both players are subgame rational. 24 

None of these worlds under consideration are compatible with the common belief in 
the truth of C2 and in ex post rationality. If C2 is commonly believed to be true, in the 
hypothetical occurrence of "2", it would be known to the players that either player one made 
a mistake, what is ruled out by assumption, or that he is not ex post rational at that node. 
That is, there is no consistent set of beliefs that can support this deviation. Therefore, both 
counterfactuals can not hold true under this theory if common belief of ex post rationality is 
to be assumed at all nodes. The truth of C2 is not consistent with the play of l1 and the 
assumption of common belief of subgame ex post rationality. Players' states of mind are not 
defensible according to the definition in section 2.3 and this is commonly believed. The key 
feature that brings this result is the combination of the assumption that players have 

 
24 In the presence of only one node for a player node and subgame rational are equivalent concepts. 
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common belief in subgame rationality and that a deviation necessary carries a consistent 
intention.  

3.4 The formalization of the results 
 
This section analyzes the conditions under which the backward induction outcome 

obtains in terms of levels of mutual knowledge and belief and within the semantics 
presented in section 2. The following definitions establish the concept of node rationality 
within our language. The axioms, on the other hand, state the structure of the game and 
players' rules of inference. 

Definitions and axioms:
(A1) Structure of the game: payoffs, available actions and order in which players 

move.25 
Subgame rationality: player i is subgame rational (Ri) iff he is node rational at every 

node at which he might have the chance to play (Rin n∈Ni). 
(A2) R1≡ R13 & R11 
(A3) R2 ≡ R22    

Node rationality will be defined in terms of contingent play as follows: 
(A4) R22 ≡ "l1 " �→ [(B2 t3 & t2 ) v (B2 l3 & l2 )]
In other words, player 2 is node rational at node 2 iff it is true that had node 2 been 

reached, he would have either taken the money -if he believed that player 1 would take it in 
the next round if given the chance- or left it otherwise. 

(A5) R11 ≡ "r"⇒ (B1 t2 & t1 ) v (B1 l2 & l1 )
Player 1 is node rational at node 1 iff it is true that he takes the money when he 

believes that player 2 would have taken it in the next round or leaves it otherwise. 
(A6) R13 ≡ "l2 " �→ "t3"
Player 1 is node rational at the third node iff C3 is true. Remember that: 
(A7) "l2 " �→"t3 " ≡ "C3"
(A8) "l1 " �→"t2 " ≡ "C2"
Rules of inference:
(A9) Conditions (C.P*),(C.~K),(C.~P),(C.K),(C.KK*dox)&(C.KB) 
Knowledge of the game and rules:
(A10) Common knowledge of  definitions and axioms (1)-(9) 
Observe that according to (A6) if R13 is true then (A7) is true. That is, given the 

definition of rationality under consideration we assume that C3 is true under any theory of 

 
25 This was presented in section 2. 
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counterfactuals under the assumption that the first player is rational at that node. We define 
R13 in this way because expectations do not matter at the last node and we do not assume 
mistakes to resemble the highest similarity with the actual world. However, note that, from 
this set of axioms, we can not assert the truth of the second counterfactual. In order to do 
this we need to introduce a theory to analyze it.  

 Notice also that (A4) and (A5) define strategies as contingent constructions.  
 We need to introduce another axiom stating how deviations might be interpreted: 
(A11) Bennett's theory: Under this theory, the play of l1 would provide a new piece of 

information to player 2 and would make him consider as possible an alternative world 
where one of the following three alternatives need to be included:26 

hj= {"K2 l1" ,"B2 ~R11"} ; hj ⊂ µ2
j (Player 2 believes that player 1 is node irrational at 

node 1 only) 
hjj= {"K2 l1" ,"B2 (R11& B1 B2l3 & B1 R2 )"} ; hjj ⊂ µ2

jj  (Player 2 believes that player 1 
is rational, that player 1 believes that 2 is rational and that player 1 believes that player 2 
believes that player 1 is irrational at the third node)27 

hjjj= {"K2 l1" ,"B2 (R11& B1 B2t3 & B1 l2 )"} ; hjjj ⊂ µ2
jjj    (Player 2 believes that player 

1 is rational and that player 1 believes that player 2 is irrational).   
The theory can be expressed in the following way: 
Definition: "Ki(A �→ B)" iff in the closest alternative state of affairs to player i's 

actual state of affairs such that KiA is true, KiB is also true. Note that by (C.K) if "Ki(A �→
B)"∈ µi then (A �→ B)∈ µi. Notice that A and B need only be possible sentences, not 
necessarily true within the player's actual state of mind; they only need to be true in the 
closest alternative world. In his actual world, player i only needs knowledge of the 
counterfactual connection between A and B. What is necessary is that there exists a possible 
world in which A and B can be known to be simultaneously true. The previous definition 
could have been stated with the operator Bi replacing Ki. In this case player i would believe 
that the counterfactual connection is true instead of knowing it. 

Trivially at the last node beliefs do not matter and hence any definition of rationality 
suffices to attach the truth of the corresponding counterfactual. An alternative or possible 
world where the last node is reached would need to include the following state of affairs: 

µjv= {"K1 l2" ,"B1 [(R22& B2~R13) v ~R2 ]"} However player 1 would play t3 in every 
possible world in which he is node rational at this last node. These worlds are considered 
closer to the actual where he is rational. Hence any of our criteria to determine the truth of 

 
26 This means that the following sets are not a full description of the alternative worlds, just a subset of it. 
27 Further levels of knowledge could have been assumed without loss of generality. These are the minimum 

conditions that explain a deviation. 
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counterfactuals would render this counterfactual true. A different matter is whether player 2 
knows or believes this and whether there could be common knowledge that C3 is true. As 
we already said, this will only be the case if he does not expect deviations by the first player 
to be correlated and attaches to this event either an infinitesimal probability or thinks of this 
scenarios as thought experiments in the spirit of Lewis' approach. 
 

3.5 Primitive epistemic and doxastic structures 
 
The idea is to start with a primitive information structure (E1 and E2) and then 

complete the set that is defensible for each player given the axioms and their knowledge of 
it. The final or complete defensible set for each player that will reflect his corresponding 
state of mind will be denoted by λi (i=1,2). The aim is to see whether there exists a 
defensible set that represents the player's states of mind that is compatible with the truth of 
the corresponding counterfactuals so that the backward induction algorithm is free of 
inconsistencies. In other words, we need to test whether there exists µi such that λi ⊂µi

(i=1,2) where µ1 and µ2 are model sets as defined in section 2. As it was explained, players' 
decisions have already been "taken" within their given states of minds. It is the game 
theorist who searches in the players' minds for consistency or defensibility. 

 
Case 1:
Assume that there is common knowledge of subgame rationality. 
E1 = {"K1 (A10),"K1 [ck(R1&R2)]","K1 ck(A11)"};    E1⊂ λ1

E2 = {"K2 (A10),"K2 [ck(R1&R2)]","K2 ck(A11)"};    E2⊂ λ2

Players are assumed to have common knowledge of the structure of the game the rules 
for belief revision and the logical framework. Moreover they are supposed to have common 
knowledge of  ex-ante node rationality. Conditions (A4) and (A5) fully describe the options 
opened to rational players and this common knowledge.  

First notice that, given the assumption of common knowledge, both players should 
share the same information structure, that is, λ1 =λ2= λ. Therefore from now on we use λ
indistinctively. By the same argument we only need to consider one model set µ, such that λ
⊂ µ can be proved to be defensible.  

According to E1 and E2, "[Ki (A11) &Ki [ck(R1&R2)]] ⊃ Ki [ck (t3)]" for i=1,2 is self-
sustaining with respect to the model set µ. Therefore "Ki [ck (t3)]" ∈ λ, i=1,2 by condition 
(C.K). In other words given common knowledge of the definition of rationality, the 
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assumption that players are rational the counterfactual at the third node becomes true and it 
is common knowledge that had node three been reached player one would have played t3.28 

What about the counterfactual at the second node? Here we need to introduce the 
assumption that there is common knowledge of axiom (A11). 

The fact that "Ki [ck (t3)]" ∈ λ for i=1,2 entails by (C.KB) that "Ki [ck (B2t3)]" ∈ λ
for i=1,2 that is that "Ki [ck (B2t3)]" is self-sustaining for i=1,2. 

Following the reasoning and given the knowledge assumptions, we obtain that "Ki

[ck(B2 t3 & t2 )]" ∈ λ for i=1,2  and by (C.K) and (C.&) that "t2" is true. That is the second 
counterfactual should be true for λ to be defensible (that is to guarantee that λ ∈ µ ) for 
i=1,2. 

The crucial question is whether this counterfactual is true and whether its truth 
maintains the defensibility of λ. In other words, the hypothetical world entailed by the 
counterfactual should be a defensible state of mind that considered an alternative to the 
actual world. 

Now we explore the alternative counterfactual worlds. First we need to consider the 
alternative worlds that are accessible from µ with respect to each player. Recall that an 
epistemically (doxastically) alternative world need to be knowledge (belief) compatible with 
the actual state of affairs that we denoted by µ.

Consider  hj= {"K2 l1" ,"B2 ~R11"} Given that it is common knowledge that hj is 
included in a possible state of affairs µj, "ck[Pi (K2 l1&B2~R11)]" ∈ µ ; i=1,2. 

The question is (K2 l1&B2 ~R11) self sustaining? Assume the answer is affirmative. 
By (C.P*) there exists µj such that "K2 l1&B2~R11" ∈ µj where µj is an alternative to µ

and µj is accessible from µ with respect to both players. 
By (C.&)  "B2~R11" ∈ µj

However  "K2R11" ∈ µ and by (C.KK*dox) "K2R11" ∈ µj and therefore by (C.KB) 
"B2R11" ∈ µj which is a contradiction. Therefore we rule out any alternative that contains hi

as an alternative world where the theory can be sustained and the second counterfactual be 
true.(Note that "K1(B2 ~R11)" does not contradict player 1's knowledge if he does not know 
what player 2 knows about player 1. 

Consider now hjj= {"K2 l1" ,"B2 (R11& B1 B2l3 & B1 R2 )"};  hjj ⊂ µjj 
Assume that " ck[Pi (K2 l1&B2 (R11& B1 B2l3 & B1 R2 ))]" ∈ µ ; i=1,2. 
By (C.P*) there exists µjj such that "K2 l1 &B2 (R11& B1 B2l3 & B1 R2 )" ∈ µjj where µjj 

is an alternative to µ and µjj is accessible from µ with respect to both players. 
By (C.&)  "B2 (B1 B2l3)" ∈ µjj 
However we already saw that "Ki [ck (t3)]" ∈ λ ⊂ µ; for i=1,2  

 
28Recall that strategies are defined as contingent structures. 
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In particular "K2 t3" ∈ µ and "KiK2 t3" ∈ µ i=1,2 
By (C.KB) "B2 (t3)" ∈ µ and given that players share the state of mind µ, this implies 

that "KiB2 t3" ∈ µ ; i=1,2. 
By the assumption of ck and (C.KB) "BiB2 t3" ∈ µ and by the same argument, 

"K2B1B2 t3" ∈ µ
By the assumption of ck and (C.KB) "B2BiB2 t3" ∈ µ; i=1,2. 
By (C.K*) "B2BiB2 t3" ∈ µjj what implies that µjj can not be an alternative to µ.
In other words, in this world player 1 believes that player 2 does not know that the 

third counterfactual is true and under the assumption of common knowledge of rationality 
this is a contradiction. 

Consider now hjjj= {"K2 l1" ,"B2 (R11& B1 B2R13 & B1 l2 )"} hjjj ⊂ µjjj 
Assume " ck[Pi (K2 l1&B2 (R11& B1 B2R13 & B1 l2 )]" ∈ µ i=1,2. 
By (C.P*) there exists µjjj such that "K2 l1 &B2(R11& B1 B2R13 & B1 l2)" ∈ µjjj where µ

jjj is an alternative to µ and µjjj is accessible from µ with respect to both players. 
By (C.&)  "B2 B1 l2" ∈ µjjj 
By (C.b*) there exists µjv belonging to the same model system Ω such that µjv is an 

alternative to µjjj where "B1 l2" ∈ µiv . Applying again (c.b*) we obtain that there should 
exist another alternative to µjjj, µv , such that "l2" ∈ µv.

We assume that "K1 R2"∈ µ and therefore by (C.KK*) "K1 R2" should belong to any 
alternative of µ. Therefore "K1 R2"∈ µv.

In the state of affairs µv player 2 would have played l2 and its rationality which is 
commonly known would only be compatible with "B2 l3"∈ µv what contradicts (C.~) 
because "K2 [ ck ( t3 ) ]" ∈ µv . That is, there is no alternative state of affairs such that the 
theory of counterfactuals could be valid and consistent with the players' knowledge. In other 
words, there is no complete set of sentences where axioms (A1)-(A11) can hold 
simultaneously so that mentioned set can be embedded in a model set. This result is similar 
in spirit to that obtained for the belief operator in section 3.2. 

 It seems that what makes this theory self-defeating is the combination of common 
knowledge of node rationality with full intentionality. Following Bicchieri [5], we reduce 
the degree of mutual knowledge to find the amount of knowledge that is necessary to 
guarantee backward induction. 

 
Case 2:
E1 = {"K1 (A10),"K1(R1)","K1 R2","K1K2 R1","K1 ck(A11)"};    E1⊂ λ1

E2 = {"K2 (A10),"K2(R2)","K2 R1","K2 ck(A11)"};    E2⊂ λ2

In this case there is common knowledge about the rules and structure of the game but 
not of node rationality of the players. Player 1 knows that 2 is rational and that player 2 
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knows that he is rational. It is sensible that this degree of knowledge should suffice to bring 
the backward induction play. Player 1 has the minimum amount of knowledge that would 
induce him to take the money at the root. On the other hand player 2 knows that player 1 is 
node rational at all nodes. This makes him expect the third counterfactual to be true and 
therefore hypothesize that he would take the money as well. 

In case 1 there was no defensible alternative world in which both counterfactuals 
could be true and where knowledge of node rationality persists after a deviation. In this case 
we can construct alternative worlds for each player that are epistemically and doxastically 
defensible: 

Player 2 's alternative world:  the above type h2
jjj-world. Player 2 can consistently 

believe that player 1 believes that he is not node rational. That is there exists µ2
j such that 

h2
jjj ⊂ µ2

j where µ2
j is an alternative world to µ2 with respect to player 2 and  µ2

j⊂ λ2.
Player 1 's alternative world: consider h1

jv= {"K1 l1" ,"B1 (R22&~K2K1R22)"};  h1
jv ⊂ µ

1
j . Player 1 can consistently believe that player 2 is node rational and that player 2 does not 

know he knows that player 2 is node rational. This means that is there exists h1
jv ⊂ µ1

j where 
µ1

j is an alternative world to µ1 with respect to player 1 and µ1
j⊂ λ1.

Case 3:
E1 = {"K1 (A10),"K1(R1)","K1 R2","K1K2 R1","K1 ck(A11)"};    E1⊂ λ1

E2 = {"K2 (A10),"K2(R2)","K2 R1","K2K1 R2","K2 ck(A11)"};    E2⊂ λ2

The only difference with respect to the previous case is that player 2 has one extra 
degree of knowledge: he knows that player 1 knows that he is rational. The hypothetical 
scenario in which a deviation occurs would render his theory of the game inconsistent. This 
happens because in the hypothetical scenario of a deviation, player 2 cannot give up his 
knowledge concerning the node rationality of player 1 (this rules out hypothetical worlds 
that contain type-hj state of affairs), his knowledge that player 1 should expect him to 
believe that the third counterfactual is true (due to  "K2 ck(A11)") and finally his knowledge 
that player 1 knows that player 2 is rational (this rules out hypothetical worlds that contain 
type-hjjj state of affairs). This are the possible type of sources of deviations and none of them 
can be consistently accepted by player 2 given his knowledge as we saw in case 1. 

However, player 1 does know this and therefore expects the second counterfactual to 
be true due to his knowledge of player 2's rationality and player 2's knowledge about 1's 
rationality. By assumption in this case player 1 does not know whether player 2 knows that 
he knows that player 2 is rational. Hence, there is a defensible set representing a world 
alternative to the actual with respect to player 1 where the contingent play required for 
backward induction does not lead to any inconsistency. 
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Case 4:
E1 = {"K1 (A10),"K1(R1)","K1 R2","K1K2 R1","K1K2K1 R2","K1 ck(A11)"};    E1⊂ λ1

E2 = {"K2 (A10),"K2(R2)","K2 R1","K2K1 R2","K2 ck(A11)"};    E2⊂ λ2

It is obvious following the previous reasoning that in this case player 1 knows that 2 
faces an inconsistency and that therefore is left with no criterion to play. Backward 
induction can not be supported in this case and for any higher degree of knowledge. 

Before leave the assumption of knowledge of rationality, it is worth noticing that had 
we modeled deviations according to our interpretation of Lewis' theory, we would have 
dropped (A11) such that the deviation need not be intentional.29 Instead we would introduce 
a new axiom stating the alternative ranking of scenarios under this theory. In Lewis' theory, 
worlds in which some departure from perfect performance explains the deviation are the 
closest ones. In this case players’ knowledge and beliefs regarding further contingent play 
need not be revised and therefore the sources of inconsistency founded in cases 1,3 and 4 do 
not arise.   

Case 5:
Now we will assume that there is common belief of subgame rationality. 
E1 = {"K1 (A10),"K1(R1)","K1 [cb(R11)]","K1 [cb(R13)]","K1 [cb(R2)]","ck(A11)"}; 
E1⊂ λ1

E2 = {"K2 (A10),"K2(R2)","K2 [cb(R11)]","K2 [cb(R13)]","K2 [cb(R2)]","ck(A11)"}; 
E2⊂ λ2

According to E1 and E2, "[Ki (A10) &Bi [cb(R1&R2)]] ⊃ Bi [cb (t3)]" for i=1,2 is self-
sustaining with respect to the model set µi for i=1,2 that respectively represents players' 
actual states of mind. We can not assert as before that the third counterfactual is known to 
be true only that it is commonly believed within the players’ actual state of mind. 

For backward induction to obtain, the truth of the second counterfactual should be 
commonly believed. As before, we consider the alternative counterfactual worlds. 

First we need to consider the alternative worlds that are accessible from µ with respect 
to each player. Recall that an epistemically (doxastically) alternative world need to be 
knowledge (belief) compatible with the actual state of affairs that we denoted by µ.
Although there is common knowledge of the rule for belief updating players need not share 
the same state of mind in terms of beliefs. Their states of mind should be compatible in 
terms of knowledge given that knowledge can not be wrong. 

 
29 Recall that under our interpretation of Lewis' theory the hypothesis of a deviation does not lead to the 

deletion of any feature that can have causal connection with the occurrence of the counterfactual consequent. 
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 Consider  hj={"K2 l1" ,"B2 ~R11"}. Due to "ck(A11)", it is common knowledge that hj

is included in a possible state of affairs µi
j and that "ck[Pi (K2 l1&B2~R11)]" ∈ µi i=1,2. The 

question is whether (K2 l1&B2 ~R11) is self sustaining. 
Assume the answer is affirmative. 
By (C.P*) there exists µi

j such that "K2 l1&B2~R11" ∈ µi
j where µ1

j and µ2
j are 

alternatives to µi and they are accessible from µ1 and µ2 respectively due to the common 
knowledge assumption regarding the update of beliefs in counterfactual scenarios. 

By (C.&)  "B2~R11" ∈ µi
j ; i=1,2. 

However  "K1R11" ∈ µ1 and by (C.KK*dox) "K1R11" ∈ µ1
j . By cb(R11), "B1B2R11"∈ µ

1
j yet  "B2~R11" ∈ µ1

j . This means that player 1's belief about player 2's beliefs was wrong. 
What about "B1B2 ~R13"? Player 1 has no reasons to drop this belief. Therefore he should 
play t1.

On the other hand "B2~R11" ∈ µ2
j and this leads player 2 to abandon the belief that 

player 1 is rational at that node. However he still believes that player 1 is rational at the third 
node. So he plays t2. Nonetheless, the assumption of common belief must be dropped. 

Consider now hjj= {"K2 l1" ,"B2 (R11& B1 B2l3 & B1 R2)"}.  Due to "ck(A11)", it is 
common knowledge that hjj is included in a possible state of affairs µi

jj and that "ck[Pi (K2

l1&B2 (R11& B1 B2l3 & B1 R2 ))]" ∈ µi i=1,2.  
By (C.P*)  µi

jj such that "K2 l1 &B2 (R11& B1B2l3 & B1 R2)" ∈ µi
jj where µ1

jj and µ2
jj 

are alternatives to µi that are accessible from µ1 and µ2.
By (C.&)  "B2 (B1 B2l3)" ∈ µi

jj   i=1,2. 
Both players need to drop a belief to reach a world where there is some degree of 

mutual belief that player 2 believes that the money will be left at the end. In this world 
player 1 believes that player 2 beliefs that the third counterfactual is not true and under the 
assumption of common knowledge of any theory of counterfactuals the truth of "t3" should 
be known. Therefore no defensible state of mind can be reached in this case by any player. 

Consider now hiii= {"K2 l1" ,"B2 (R11& B1 B2R13 & B1 l2 )"}. Due to "ck(A11)", it is 
common knowledge that hjjj is included in a possible state of affairs µi

jjj and that "ck[Pi (K2

l1&B2 (R11& B1 B2R13 & B1 l2 )]" ∈ µi i=1,2. 
By (C.P*) there exists µi

iii such that "K2 l1 &B2(R11& B1 B2R13 & B1 l2)" ∈ µi
iii where 

µ1
iii and µ1

iii are alternatives to µ1 and µ1 that are accessible from µ1 and µ2.
By (C.&)  "B2 B1 l2" ∈ µi

iii 
However from cb(R22), (c.b*) and the transitivity property there exists µvj belonging to 

the same model system Ω such that µvj is an alternative to µ2
iii where "B2B1 R22" ∈ µvj.

In the state of affairs µvj player 2 would have played l2 and his rationality which is 
commonly believed would only be compatible with "B2 l3"∈ µvj what contradicts (C.~) 
because "K2[ck (t3)]" ∈ µvj. This means that player 2 cannot access a world in which he is 
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not supposed to be node rational. Therefore it must be that "B2 B1 t2" ∈ µi
vj. The question is 

whether µi
iii could be reached from µ2. Player 2 should give up some beliefs in order to have 

access to that world. As before, players may still play the backward induction outcome but 
the assumption of common belief of node rationality can not hold in alternative or 
hypothetical scenarios. 

There is no alternative state of affairs such that the theory of counterfactuals could be 
valid and consistent with players' knowledge and the assumption of common belief in node 
rationality ex post. However, there are possible states of minds one for each player reachable 
from their actual states of minds where their decision is the backward induction outcome 
and where common belief in node rationality can be assumed30. Here we need to impose a 
criteria of closeness to drop hypothesis like hii above. The other option is to relax ck(A11) 
for cb(A11). If the theory can be relaxed then the inconsistency need not obtain. However 
this is not a good solution unless we allow for the coexistence of different theories such that 
when one is dropped an alternative is chosen. The purpose of the present analysis is to 
compare the performance of these two theories and not to offer a general framework. 

 
3.6 Review of the results  

The typical backward induction argument is free of contradictions in the following 
circumstances: 

i) After a deviation, players update their assumptions regarding rationality, according 
to our interpretation of Lewis’ theory of counterfactuals, and we assume common knowledge
(or belief) of rationality. 

Within Lewis' theory, there are worlds in which players deviate being still rational ex 
ante and ex post. There are also worlds in which this is not the case; that is, where there is 
node irrationality. However, under the assumption of common knowledge of ex ante 
rationality, the former type of worlds are closer to the actual than the latter. In the 
counterfactual world of a deviation, namely, at the node where the deviation occurred, the a
priori belief that the player was not going to deviate need to be given up. Nevertheless, 
under the proposed criteria for closeness, this does not lead to reject the belief or knowledge 
in further node rationality or node rationality at other deviation-worlds. The reason lies in 
the way in which beliefs are revised. More precisely, deviations need not have causal 
consequences. There are no intentions underlying the deviation, neither a behavioral 
assumption correlating decisions at different nodes. Deviations may be related to the 

 
30 A smaller degree of mutual belief is necessary and sufficient. In the present game. Player 1 needs to 

believe that player 2 is rational and that player 2 believes that player 1 is rational. 
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performance of the action (which also a form of irrationality) and not with the decision 
itself. Therefore, rationality along the decision process is kept. Notice that the wrong 
performance does not take place in the actual but in the counterfactual world. 

ii) Players update their beliefs about the intentionality of the deviator (no mistakes are 
allowed out-of-the equilibrium path and therefore all behavior is intentional) but their 
knowledge is limited. For instance, if player 2 does not know that 1 knows that he is 
rational, then observing a deviation does not contradict his former knowledge and belief. 
This can be obtained under the present interpretation of Bennett's theory of counterfactuals. 
In the version of the centipede game given in this paper, this obtains when player 2 knows 
that player 1 is rational, player 1 knows that player 2 is rational and player 1 knows that 
player 2 knows that he is rational. The drawback is to justify why the level of knowledge is 
exactly the one required. This means that, if the players were to face the game again with 
one node less (being this possible31) the theory would become inconsistent or self-defeating. 
Therefore, it does not seem to be a robust result. 

iii) Players update their beliefs as in ii) but instead of knowledge they have mutual 
belief in their node rationality. The degree of mutual belief that is necessary has a lower 
bound for the root player equal to the number of nodes minus one. The degree of mutual 
belief is equal to the degree of mutual knowledge needed in ii) above (see Bicchieri [4] and 
Samet [18]). 

On the other hand, our analysis leads to a contradiction within the set that represents 
players' knowledge and beliefs in the following cases: 

iv) There is only intentional play (deviations confer information about the intentions 
of the deviator) and players have knowledge that exceeds the level of knowledge that is 
necessary for ii) above. In a three-legged centipede game this obtains for any level of 
information of player 1 in which at least he knows that 2 knows that he knows that 2 is 
rational. This is the lower bound. The upper bound is infinity, which is the case of common 
knowledge. When player 2 knows that 1 knows that she is rational she knows that there is 
something wrong with her theory. Therefore she is left with a contradiction. If player 1 does 
not know this, then backward induction obtains. However, if player 1 knows that this 
inconsistency results, he also knows that 2 is facing a contradiction and therefore player 1 
himself is left with no theory and backward induction fails. For higher levels of knowledge 
this naturally keeps on holding (see Bicchieri [4]&[5]). 

v) There is only intentional play and players have mutual belief in node rationality 
with a degree that exceeds the lower bound defined in ii). The upper bound is again, infinity.  

 

31 Assume we started at least with four nodes. 
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4 Concluding remarks 

1) According to our interpretation of Lewis' theory, deviations do not possess any 
meaning in themselves; they can be interpreted as once and for all trembles. The main 
reason why this approach provides a proper foundation for the backward induction result is 
that mistakes or trembles are not correlated. It is worth remembering that Lewis imposes 
this condition to guarantee the closest resemblance to the factual world. In the original 
backward induction argument, deviations do not have meaningful consequences, neither in 
the world in which they occur, nor in other counterfactual scenarios. Within our 
interpretation of Lewis' miraculous worlds, deviations have a meaning in the world of the 
deviation under analysis (in this world the player played irrationally) but carry no 
consequences in terms of behavior at other nodes off-the-equilibrium path. The way in 
which the hypothetical scenario of a deviation is brought about, is irrelevant to the 
assumption about further rationality.  

2) Under our interpretation of Bennett's framework on the other hand, deviations give 
some information about the beliefs of the deviator, who might have had a reason to have 
deviated, given that he always maximizes. In this case, counterfactual worlds are such that if
C2 is true, then either player 1 is node rational and both players do not commonly believe in 
the truth of C2, or C2 is true and commonly held but it is also commonly held that player 1 
is ex post irrational at the root. This last result in itself does not imply the falsity of C3 if we 
differentiate between rationality in choosing an action at different nodes and rationality in 
belief. Note that playing l1 is not node irrational per se; player 1 is node irrational if he plays 
l1 while believing that C2 is true. On the other hand, to leave the money at the last node is 
fully irrational because no beliefs matter and is the play that leads with certainty to the 
worst payoff at the node.  

3) The theories of counterfactuals above presented, reveal that there is no unique way
to solve the context dependence in which counterfactuals are generally stated. Moreover, the 
criteria presented in this paper do not exhaust the list of possible ways to model 
counterfactual scenarios. There are frameworks in which deviations provide some 
meaningful information to the players: namely, that the deviator may be intrinsically 
irrational and may play irrationally at other nodes. Binmore [6], McKelvey R. and Palfrey 
[16] and Reny [17] offer versions of this approach. 

Games of incomplete information provide a framework to incorporate irrational 
behavior that responds to a pattern. In some contexts, for instance a long centipede, they 
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may offer a more realistic explanation32. Consider a game of incomplete information where 
there are two types of players: maximizers and altruists. Maximizers are bayesian decision-
makers and have the payoffs we have so far worked with. Altruists have payoffs that make 
them choose “leave” at every node where they may be called to play. Players’ prior 
probability of altruists is p>0 and it is common knowledge. It is worth noticing that players’ 
prior probability of altruists or irrational types, not only affects counterfactual worlds but 
also the actual world. For this reason, and depending on p, rational types may under 
equilibrium leave the money or play mixed strategies at all nodes but the last one, where 
they always take it. A rational type, who plays at the previous to last node, may mix or play 
leave, depending on his beliefs regarding the existence of an irrational type at the last node.  

A question may be posed at this stage. Shouldn't there be a way to decide which of the 
theories of counterfactuals is more suitable? The answer to this matter crucially depends on 
how we think about rationality and on the context and structure of the game. If rationality is 
considered a human capacity, we have to admit that players may make rational choices but 
for some reason fail to perform them. In this scenario, a miracle is a metaphor for thinking 
about the occurrence of an unintended, uncorrelated deviation. This approach is free of 
inconsistencies and always yields the backward induction outcome (with its pros and cons). 

Within the framework offered by games of incomplete information, like the one 
described, irrationality is correlated. Therefore, the possibility of irrationality is always 
open, also in the equilibrium world. This feature is embedded in the model through p and 
the nature or payoffs of the altruists. In games of perfect information on the other hand, 
counterfactual deliberation is incorporated in the process of belief updating at unreached 
nodes, through the selection of the closest deviation-world. Neither of the approaches avoids 
the ambiguity behind counterfactual reasoning. There is no unique way to choose either the 
nature of the types and their prior probabilities, or the closest deviation-world.33 These 
features will depend on the particular situation in which the game is played.       

Regarding the idea that there could be rational or intentional deviations, we face the 
problem of causality: the rationality of a player depends upon his choices and not vice versa. 
In other words, a deviation need not be rational because it was chosen by a rational player. 
Nevertheless, there is some scope for the idea that there could be some kind of law or 
principle behind people’s actions, supported by previous observations, so that after 

 
32 If the players are confortable with the assumption that their opponents could be types who always leave the 

money.  
33 To be independent of counterfactual reasoning from outside the model, the types should represent a 

complete description of the game. That is, there can not be mistakes or irrationality or any other explanation 

beyond the types. Otherwise an altruist could make a mistake and take the money! 
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observing a deviation we are less willing to give up the assumption of full rationality, 
including the implementation of actions. However, this criterion may yield some un-
intuitive results in cases in which the set of parameters in the counterfactual world is not 
fully described, as in the counterfactual “Had John jumped off the Empire State building he 
would have killed himself” (see section 1.2). Although the issue of whether there was a net 
seems to be unspecified, Bennett's theory brings it as a necessary feature of the 
counterfactual world whereas Lewis' does not lead to the same type of revision of the facts 
holding at the antecedent time. 

One could also think of a game where different forms of irrationality and intentions 
coexist and players have common knowledge of a belief revision policy which, for a given 
actual world and each possible deviation, pins down the closest counterfactual world.  

4) In the introduction we stated that one of the controversial issues regarding the 
foundations of the backward induction argument in this game, is whether the mere 
consideration of out of equilibrium situations requires the weakening of the assumption of 
full rationality in order to avoid a contradiction.  

Without any weakening, the term "common knowledge of rationality" is an empty 
notion. Either mistakes, wrong calculation or wrong beliefs should be introduced to 
conceive the world of a deviation34. However, these forms of irrationality are supposed to 
occur off-the-equilibrium path and constitute epistemological frameworks within which the 
deviating behavior can be analyzed. In other words, for the notion of rationality to be 
meaningful we have to assume that irrational choices are open to the players. Players need 
to have access to these counterfactual scenarios and this access in itself, does not necessarily 
mean giving up the notion of rationality or the amount of information that players have in 
the actual world. As it was said before, players will not be rational at all nodes or along all 
possible paths of the game (otherwise there would be no rational play). They need to be 
rational in the actual world and in every closest deviation world, for every possible 
deviation. 

The important feature of the present analysis is its capability to deal separately with 
the different facets of rationality, namely, rationality to choose and implement an action and 
to form beliefs. It is worth noticing that rationality in choosing an action is the only one that 
determines node-rationality before the players fully follow the consequences of their 
conjectures. Under Bennett's approach we conclude that common belief in the truth of C2

34 Wrong beliefs at off-the-equilibrium nodes reflect some sort of ex post irrationality. Trembles, on the other 

hand, consist in another form of irrationality ex-post because players that tremble fail to actually perform the 

right action which is a necessary condition for rationality (see Elster [9] page 13). 
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and common belief of subgame rationality ex post (when the iterative analysis that brings 
consistency amongst players' beliefs has been performed) are not compatible.  

The outcome of this paper should be interpreted in the following way: thinking about 
counterfactual scenarios à la Lewis provides no consistency problems whereas to do it à la 
Bennett may render the theory inconsistent, depending on the amount of mutual knowledge 
or belief that players have. These two cases do not exhaust the possible ways of thinking 
about counterfactual situations. The contribution of the present work has been to introduce 
an alternative interpretation capable of showing under which kind of assumptions 
concerning hypothetical thinking and knowledge we obtain consistent foundations for the 
backward induction outcome. 
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